Skip to Content
Merck
CN
  • Competition studies confirm two major barriers that can preclude the spread of resistance to quorum-sensing inhibitors in bacteria.

Competition studies confirm two major barriers that can preclude the spread of resistance to quorum-sensing inhibitors in bacteria.

ACS chemical biology (2014-08-12)
Joseph P Gerdt, Helen E Blackwell
ABSTRACT

The growing threat of antibiotic resistance necessitates the development of novel antimicrobial therapies. Antivirulence agents that target group-beneficial traits in microorganisms (i.e., phenotypes that help the cells surrounding the producer cell instead of selfishly benefiting only the producer cell) represent a new antimicrobial approach that may be robust against the spread of resistant mutants. One prominent group-beneficial antivirulence target in bacteria is quorum sensing (QS). While scientists are producing new QS inhibitors (QSIs) at an increasing pace for use as research tools and potential therapeutic leads, substantial work remains in empirically demonstrating a robustness against resistance. Herein we report the results of in vitro competition studies in Pseudomonas aeruginosa that explicitly confirm that two separate barriers can impede the spread of resistance to QSIs: (1) insufficient native QS signal levels prevent rare QSI-resistant bacteria from expressing their QS regulon, and (2) group-beneficial QS-regulated phenotypes produced by resistant bacteria are susceptible to cheating by QSI-sensitive neighbors, even when grown on a solid substrate with limited mixing to mimic infected tissue. These results underscore the promise of QSIs and other antivirulence molecules that target group beneficial traits as resistance-robust antimicrobial treatments and provide support for their further development.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Sodium chloride solution, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Supelco
Sodium chloride, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sodium chloride, Vetec, reagent grade, 99%
Sigma-Aldrich
Adenosine
Sigma-Aldrich
Adenosine, ≥99%
Sigma-Aldrich
Adenosine, BioReagent, suitable for cell culture
Supelco
Adenosine, Pharmaceutical Secondary Standard; Certified Reference Material
Adenosine, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Adenosine, Vetec, reagent grade, 98%