Skip to Content
Merck
CN
  • Promotion of mesenchymal-to-epithelial transition by Rac1 inhibition with small molecules accelerates hepatic differentiation of mesenchymal stromal cells.

Promotion of mesenchymal-to-epithelial transition by Rac1 inhibition with small molecules accelerates hepatic differentiation of mesenchymal stromal cells.

Tissue engineering. Part A (2015-01-28)
Nan-Yuan Teng, Yi-Shiuan Liu, Hao-Hsiang Wu, Yu-An Liu, Jennifer H Ho, Oscar Kuang-Sheng Lee
ABSTRACT

In vitro differentiation of stem cells into specific cell lineages provides a stable cell supply for cell therapy and tissue engineering. Therefore, understanding the mechanisms underlying such differentiation processes is critical for generating committed lineage-specific cell progenies effectively. We previously developed a two-step protocol to differentiate mesenchymal stromal cells (MSCs) into hepatocyte-like cells. Since hepatic differentiation involves mesenchymal-epithelial transition (MET), we hypothesize that promoting MET could further accelerate the differentiation process. Ras-related C3 botulinum toxin substrate 1 (Rac1) is involved in actin polymerization and its role in MET was investigated in the study. Our results showed that inhibition of Rac1 activation by Rac1-specific inhibitor, NSC23766, led to cells favoring epithelial morphology and being more packed during hepatic differentiation. In addition, Rac1 inhibition accelerated the upregulation of hepatic marker genes accompanied by more mature hepatic functions. Taken together, promotion of MET by inhibiting Rac1 accelerates the hepatic differentiation of MSCs. Our findings open a new prospect of directing the commitment of MSCs by manipulating cell morphology and cytoskeleton arrangement through small molecules. The results provide further insight into scaffold design for rapid production of MSC-differentiated hepatocytes.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Millipore
Urea solution, suitable for microbiology, 40% in H2O
Sigma-Aldrich
Urea-12C, 99.9 atom % 12C
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Formaldehyde solution, Molecular Biology, BioReagent, ≥36.0% in H2O (T)
Supelco
Formaldehyde solution, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
Urea solution, 40 % (w/v) in H2O
Sigma-Aldrich
Formaldehyde solution, Molecular Biology, 36.5-38% in H2O
Sigma-Aldrich
Formaldehyde solution, tested according to Ph. Eur.
Sigma-Aldrich
Urea solution, BioUltra, ~8 M in H2O
SAFC
Formaldehyde solution, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
USP
Niacinamide, United States Pharmacopeia (USP) Reference Standard
Supelco
Urea, 8 M (after reconstitution with 16 mL high purity water)
Sigma-Aldrich
Periodic acid, 99.999% trace metals basis
USP
Urea, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
L-Glutamine
Sigma-Aldrich
Urea, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%, 99.0-101.0% (calc. on dry substance)
Sigma-Aldrich
Nicotinamide, ≥99.5% (HPLC)
Sigma-Aldrich
Nicotinamide, ≥98.5% (HPLC)
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
Urea, BioUltra, Molecular Biology, 99% (T)
SAFC
L-Glutamine
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Urea, suitable for electrophoresis
Sigma-Aldrich
Urea, meets USP testing specifications
Sigma-Aldrich
Periodic acid, suitable for electrophoresis, ≥99%
Sigma-Aldrich
Urea, BioXtra, pH 7.5-9.5 (20 °C, 5 M in H2O)
Sigma-Aldrich
Urea, powder, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Nicotinamide, BioReagent, suitable for cell culture, suitable for insect cell culture