Skip to Content
Merck
CN
  • Suppression of Ov-grn-1 encoding granulin of Opisthorchis viverrini inhibits proliferation of biliary epithelial cells.

Suppression of Ov-grn-1 encoding granulin of Opisthorchis viverrini inhibits proliferation of biliary epithelial cells.

Experimental parasitology (2014-12-03)
Atiroch Papatpremsiri, Michael J Smout, Alex Loukas, Paul J Brindley, Banchob Sripa, Thewarach Laha
ABSTRACT

Multistep processes likely underlie cholangiocarcinogenesis induced by chronic infection with the fish-borne liver fluke, Opisthorchis viverrini. One process appears to be cellular proliferation of the host bile duct epithelia driven by excretory-secretory (ES) products of this pathogen. Specifically, the secreted growth factor Ov-GRN-1, a liver fluke granulin, is a prominent component of ES and a known driver of hyper-proliferation of cultured human and mouse cells in vitro. We show potent hyper-proliferation of human cholangiocytes induced by low nanomolar levels of recombinant Ov-GRN-1 and similar growth produced by low microgram concentrations of ES products and soluble lysates of the adult worm. To further explore the influence of Ov-GRN-1 on the flukes and the host cells, expression of Ov-grn-1 was repressed using RNA interference. Expression of Ov-grn-1 was suppressed by 95% by day 3 and by ~100% by day 7. Co-culture of Ov-grn-1 suppressed flukes with human cholangiocyte (H-69) or human cholangiocarcinoma (KKU-M214) cell lines retarded cell hyper-proliferation by 25% and 92%, respectively. Intriguingly, flukes in which expression of Ov-grn-1 was repressed were less viable in culture, suggesting that Ov-GRN-1 is an essential growth factor for survival of the adult stage of O. viverrini, at least in vitro. To summarize, specific knock down of Ov-grn-1 reduced in vitro survival and capacity of ES products to drive host cell proliferation. These findings may help to contribute to a deeper understanding of liver fluke induced cholangiocarcinogenesis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Adenine, BioReagent, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Adenine, BioReagent, suitable for cell culture
Sigma-Aldrich
Magnesium chloride solution, Molecular Biology, 1.00 M±0.01 M
Sigma-Aldrich
Magnesium chloride solution, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
Adenine, ≥99%
Sigma-Aldrich
Magnesium chloride solution, BioUltra, Molecular Biology, 2 M in H2O
Sigma-Aldrich
Magnesium chloride solution, BioUltra, Molecular Biology, ~0.025 M in H2O
Sigma-Aldrich
Magnesium chloride solution, BioUltra, Molecular Biology, ~1 M in H2O
Sigma-Aldrich
Magnesium chloride solution, 0.1 M
Adenine, European Pharmacopoeia (EP) Reference Standard
Supelco
Adenine, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Adenine, Vetec, reagent grade, ≥99%
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Magnesium chloride, suitable for insect cell culture, BioReagent, ≥97.0%
Sigma-Aldrich
Magnesium chloride, ≥98%
Sigma-Aldrich
Magnesium chloride, powder, <200 μm