Skip to Content
Merck
CN
  • Single-cell sphingosine kinase activity measurements in primary leukemia.

Single-cell sphingosine kinase activity measurements in primary leukemia.

Analytical and bioanalytical chemistry (2014-07-02)
Alexandra J Dickinson, Sally A Hunsucker, Paul M Armistead, Nancy L Allbritton
ABSTRACT

Sphingosine kinase (SK) is a promising therapeutic target in a number of cancers, including leukemia. Traditionally, SK has been measured in bulk cell lysates, but this technique obscures the cellular heterogeneity present in this pathway. For this reason, SK activity was measured in single cells loaded with a fluorescent sphingosine reporter. An automated capillary electrophoresis (CE) system enabled rapid separation and quantification of the phosphorylated and nonphosphorylated sphingosine reporter in single cells. SK activity was measured in tissue-cultured cells derived from chronic myelogenous leukemia (K562), primary peripheral blood mononuclear cells (PBMCs) from three patients with different forms of leukemia, and enriched leukemic blasts from a patient with acute myeloid leukemia (AML). Significant intercellular heterogeneity existed in terms of the degree of reporter phosphorylation (as much as an order of magnitude difference), the amount of reporter uptake, and the metabolites formed. In K562 cells, the average amount of reporter converted to the phosphorylated form was 39 ± 26% per cell. Of the primary PBMCs analyzed, the average amount of phosphorylated reporter was 16 ± 25%, 11 ± 26%, and 13 ± 23% in a chronic myelogenous leukemia (CML) patient, an AML patient, and a B-cell acute lymphocytic leukemia (B-ALL) patient, respectively. These experiments demonstrated the challenge of studying samples comprised of multiple cell types, with tumor blasts present at 5 to 87% of the cell population. When the leukemic blasts from a fourth patient with AML were enriched to 99% of the cell population, 19 ± 36% of the loaded sphingosine was phosphorylated. Thus, the diversity in SK activity remained even in a nearly pure tumor sample. These enriched AML blasts loaded significantly less reporter (0.12 ± 0.2 amol) relative to that loaded into the PBMCs in the other samples (≥1 amol). The variability in SK signaling may have important implications for SK inhibitors as therapeutics for leukemia and demonstrates the value of single-cell analysis in characterizing the nature of oncogenic signaling in cancer.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Magnesium chloride solution, 0.1 M
Sigma-Aldrich
Sodium phosphate monobasic-16O4, 99.9 atom % 16O
Sigma-Aldrich
Methanol, purification grade, 99.8%
Sigma-Aldrich
Magnesium chloride solution, BioUltra, Molecular Biology, ~1 M in H2O
Sigma-Aldrich
1-Propanol, natural, ≥98%, FG
Sigma-Aldrich
1-Propanol, ≥99%, FG
Sigma-Aldrich
1-Propanol, anhydrous, 99.7%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
HEPES, BioUltra, Molecular Biology, ≥99.5% (T)
Sigma-Aldrich
Magnesium chloride solution, BioUltra, Molecular Biology, ~0.025 M in H2O
Supelco
1-Propanol, analytical standard
Sigma-Aldrich
Hexamethyldisiloxane, viscosity 0.65 cSt (25 °C)
Sigma-Aldrich
Poly(dimethylsiloxane), viscosity 1.0 cSt (25 °C)
Sigma-Aldrich
Magnesium chloride solution, Molecular Biology, 1.00 M±0.01 M
Sigma-Aldrich
Magnesium chloride solution, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Sigma-Aldrich
Magnesium chloride solution, BioUltra, Molecular Biology, 2 M in H2O
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
1-Propanol, ACS reagent, ≥99.5%
Supelco
Methanol, analytical standard
USP
1-Propanol, United States Pharmacopeia (USP) Reference Standard
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
1-Propanol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
HEPES, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%