Skip to Content
Merck
CN
  • FGF/FGFR2 signaling regulates the generation and correct positioning of Bergmann glia cells in the developing mouse cerebellum.

FGF/FGFR2 signaling regulates the generation and correct positioning of Bergmann glia cells in the developing mouse cerebellum.

PloS one (2014-07-02)
Florian Meier, Florian Giesert, Sabit Delic, Theresa Faus-Kessler, Friederike Matheus, Antonio Simeone, Sabine M Hölter, Ralf Kühn, Daniela M Vogt Weisenhorn, Wolfgang Wurst, Nilima Prakash
ABSTRACT

The normal cellular organization and layering of the vertebrate cerebellum is established during embryonic and early postnatal development by the interplay of a complex array of genetic and signaling pathways. Disruption of these processes and of the proper layering of the cerebellum usually leads to ataxic behaviors. Here, we analyzed the relative contribution of Fibroblast growth factor receptor 2 (FGFR2)-mediated signaling to cerebellar development in conditional Fgfr2 single mutant mice. We show that during embryonic mouse development, Fgfr2 expression is higher in the anterior cerebellar primordium and excluded from the proliferative ventricular neuroepithelium. Consistent with this finding, conditional Fgfr2 single mutant mice display the most prominent defects in the anterior lobules of the adult cerebellum. In this context, FGFR2-mediated signaling is required for the proper generation of Bergmann glia cells and the correct positioning of these cells within the Purkinje cell layer, and for cell survival in the developing cerebellar primordium. Using cerebellar microexplant cultures treated with an FGFR agonist (FGF9) or antagonist (SU5402), we also show that FGF9/FGFR-mediated signaling inhibits the outward migration of radial glia and Bergmann glia precursors and cells, and might thus act as a positioning cue for these cells. Altogether, our findings reveal the specific functions of the FGFR2-mediated signaling pathway in the generation and positioning of Bergmann glia cells during cerebellar development in the mouse.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Ascorbic acid, FCC, FG
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride solution, 0.85%
Supelco
L-Ascorbic acid, analytical standard
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Hypoxanthine, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Hypoxanthine, ≥99.0%
Sigma-Aldrich
L-Ascorbic acid, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
L-Ascorbic acid, suitable for cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
L-Ascorbic acid, meets USP testing specifications
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
L-Ascorbic acid, powder, suitable for cell culture, γ-irradiated
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
L-Ascorbic acid, tested according to Ph. Eur.
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Sigma-Aldrich
L-Ascorbic acid, ACS reagent, ≥99%
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ≥99.0% (RT)
Sigma-Aldrich
L-Ascorbic acid, 99%
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Sigma-Aldrich
L-Ascorbic acid, BioUltra, ≥99.5% (RT)
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)