Skip to Content
Merck
CN
  • Nanonization of curcumin by antisolvent precipitation: process development, characterization, freeze drying and stability performance.

Nanonization of curcumin by antisolvent precipitation: process development, characterization, freeze drying and stability performance.

International journal of pharmaceutics (2014-12-03)
Deepak Yadav, Neeraj Kumar
ABSTRACT

The present work aims to investigate applicability of antisolvent precipitation method for preparation of nanosized curcumin and to control their characteristics by determining the influence of process and solvents on solid-state properties of curcumin nanoparticles. Effects of different experimental parameters on particle size were investigated using dynamic light scattering. Particle morphology was studied using SEM. Drug content in stabilized nanoparticles was determined using HPLC. Residual moisture content after lyophilisation was determined using Karl Fischer method and solid state properties were investigated using DSC, TGA, FTIR and powder-XRD. The resulting product showed a high drug load and contained the drug in amorphous form. The particle diameters of prepared curcumin nanoparticles were found in the range of 100-200 nm. In vitro drug release studies indicated a sustained release profile of curcumin from the nanoparticles. Antisolvent precipitation produced amorphous curcumin nanoparticles whose size and morphology could be controlled using gelatine as stabilizer. Lyophilized curcumin nanoparticles with d-sorbitol as lyoprotectant possessed good redispersibility and showed up to 4 times faster in vitro curcumin release rate than that of unprocessed curcumin. Stability tests (at 2-8°C and ambient conditions) indicated that the product was stable for up to 6 months of storage.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
D-Sorbitol, liquid, tested according to Ph. Eur.
Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Supelco
D-(+)-Glucose, analytical standard
Supelco
Tetrahydrofuran, Selectophore, ≥99.5%
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
D-Sorbitol, 99% (GC)
Sigma-Aldrich
D-(+)-Glucose, tested according to Ph. Eur.
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Sorbitol F solution, 70 wt. % in H2O, Contains mainly D-sorbitol with lesser amounts of other hydrogenated oligosaccharides
Sigma-Aldrich
Tetrahydrofuran, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
D-Sorbitol, FCC, FG
Sigma-Aldrich
D-Sorbitol, BioUltra, ≥99.0% (HPLC)
Sigma-Aldrich
D-Sorbitol, ≥98% (GC)
Sigma-Aldrich
D-Sorbitol, ≥98% (GC), Molecular Biology
Sigma-Aldrich
D-Sorbitol, ≥98% (GC), BioXtra
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
D-(+)-Glucose, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, ACS reagent
Sigma-Aldrich
D-(+)-Glucose, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
D-Sorbitol, ≥98% (GC), BioReagent, suitable for cell culture, suitable for plant cell culture
Supelco
Tetrahydrofuran, analytical standard
Supelco
Methanol, analytical standard
Sigma-Aldrich
Tetrahydrofuran, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Supelco
Sorbitol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Potassium hydroxide concentrate, 0.1 M KOH in water (0.1N), Eluent concentrate for IC
Sigma-Aldrich
Tetrahydrofuran, inhibitor-free, purification grade
Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC), BioXtra