Skip to Content
Merck
CN
  • Composition-property relationships for radiopaque composite materials: pre-loaded drug-eluting beads for transarterial chemoembolization.

Composition-property relationships for radiopaque composite materials: pre-loaded drug-eluting beads for transarterial chemoembolization.

Journal of biomaterials applications (2015-02-19)
Nancy Kilcup, Elena Tonkopi, Robert J Abraham, Daniel Boyd, Sharon Kehoe
ABSTRACT

The purpose of this study was to synthesize and optimize intrinsically radiopaque composite embolic microspheres for sustained release of doxorubicin in drug-eluting bead transarterial chemoembolization. Using a design of experiments approach, 12 radiopaque composites composed of polylactic-co-glycolic acid and a radiopaque glass (ORP5) were screened over a range of compositions and examined for radiopacity (computed tomography) and density. In vitro cell viability was determined using an extract assay derived from each composition against the human hepatocellular carcinoma cell line, HepG2. Mathematical models based on a D-Optimal response surface methodology were used to determine the preferred radiopaque composite. The resulting radiopaque composite was validated and subsequently loaded with doxorubicin between 0 and 1.4% (wt% of polylactic-co-glycolic acid) to yield radiopaque composite drug-eluting beads. Thereafter, the radiopaque composite drug-eluting beads were subjected to an elution study (up to 168 h) to determine doxorubicin release profiles (UV-Vis spectroscopy) and in vitro cell viability. Radiopaque composites evaluated for screening purposes had densities between 1.28 and 1.67 g.cm(-3), radiopacity ranged between 211 and 1450HU and cell viabilities between 91 and 106% were observed. The optimized radiopaque composite comprised 23 wt% polylactic-co-glycolic acid and 60 wt% ORP5 with a corresponding density of 1.63 ± 0.001 g.cm(-3), radiopacity at 1930 ± 44HU and cell viability of 89 ± 7.6%. Radiopaque composite drug-eluting beads provided sustained doxorubicin release over 168 h. In conclusion, the mathematical models allowed for the identification and synthesis of a unique radiopaque composite. The optimized radiopaque composite had similar density and cell viability to commercially available embolic microspheres. It was possible to preload doxorubicin into radiopaque composite drug-eluting beads, such that sustained release was possible under simulated physiological conditions.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Lactic acid, meets USP testing specifications
Sigma-Aldrich
Doxorubicin hydrochloride, 98.0-102.0% (HPLC)
Sigma-Aldrich
Thiazolyl Blue Tetrazolium Bromide, 98%
Sigma-Aldrich
Thiazolyl Blue Tetrazolium Bromide, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥97.5% (HPLC)
Sigma-Aldrich
Lactic acid, natural, ≥85%
Sigma-Aldrich
Lactic acid, 88%, FCC
Sigma-Aldrich
Lactic acid solution, ACS reagent, ≥85%
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Iodine, anhydrous, beads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Dichloromethane, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Iodine, ≥99.99% trace metals basis
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dichloromethane, suitable for HPLC, ≥99.9%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
Iodine, 99.999% trace metals basis
Sigma-Aldrich
DL-Lactic acid, 85 % (w/w), syrup
Sigma-Aldrich
Dimethyl sulfoxide, Vetec, reagent grade, 99%
Sigma-Aldrich
Dimethyl sulfoxide, Molecular Biology
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, Molecular Biology, ≥99.5% (GC)