Skip to Content
Merck
CN
  • Potential interactions of calcium-sensitive reagents with zinc ion in different cultured cells.

Potential interactions of calcium-sensitive reagents with zinc ion in different cultured cells.

PloS one (2015-05-27)
Koichi Fujikawa, Ryo Fukumori, Saki Nakamura, Takaya Kutsukake, Takeshi Takarada, Yukio Yoneda
ABSTRACT

Several chemicals have been widely used to evaluate the involvement of free Ca(2+) in mechanisms underlying a variety of biological responses for decades. Here, we report high reactivity to zinc of well-known Ca(2+)-sensitive reagents in diverse cultured cells. In rat astrocytic C6 glioma cells loaded with the fluorescent Ca(2+) dye Fluo-3, the addition of ZnCl2 gradually increased the fluorescence intensity in a manner sensitive to the Ca(2+) chelator EGTA irrespective of added CaCl2. The addition of the Ca(2+) ionophore A23187 drastically increased Fluo-3 fluorescence in the absence of ZnCl2, while the addition of the Zn(2+) ionophore pyrithione rapidly and additionally increased the fluorescence in the presence of ZnCl2, but not in its absence. In cells loaded with the zinc dye FluoZin-3 along with Fluo-3, a similarly gradual increase was seen in the fluorescence of Fluo-3, but not of FluoZin-3, in the presence of both CaCl2 and ZnCl2. Further addition of pyrithione drastically increased the fluorescence intensity of both dyes, while the addition of the Zn(2+) chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethane-1,2-diamine (TPEN) rapidly and drastically decreased FluoZin-3 fluorescence. In cells loaded with FluoZin-3 alone, the addition of ZnCl2 induced a gradual increase in the fluorescence in a fashion independent of added CaCl2 but sensitive to EGTA. Significant inhibition was found in the vitality to reduce 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide in a manner sensitive to TPEN, EDTA and BAPTA in C6 glioma cells exposed to ZnCl2, with pyrithione accelerating the inhibition. Similar inhibition occurred in an EGTA-sensitive fashion after brief exposure to ZnCl2 in pluripotent P19 cells, neuronal Neuro2A cells and microglial BV2 cells, which all expressed mRNA for particular zinc transporters. Taken together, comprehensive analysis is absolutely required for the demonstration of a variety of physiological and pathological responses mediated by Ca(2+) in diverse cells enriched of Zn(2+).

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Retinoic acid, ≥98% (HPLC), powder
Sigma-Aldrich
Thiazolyl Blue Tetrazolium Bromide, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥97.5% (HPLC)
Sigma-Aldrich
Thiazolyl Blue Tetrazolium Bromide, 98%
Sigma-Aldrich
N,N,N′,N′-Tetrakis(2-pyridylmethyl)ethylenediamine
Sigma-Aldrich
Propidium iodide, ≥94.0% (HPLC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Propidium iodide solution
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Fluo-3, suitable for fluorescence, ~70%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, Vetec, reagent grade, 98%