Skip to Content
Merck
CN
  • Effects of chitosan on nutrient digestibility, methane emissions, and in vitro fermentation in beef cattle.

Effects of chitosan on nutrient digestibility, methane emissions, and in vitro fermentation in beef cattle.

Journal of animal science (2015-10-07)
D D Henry, M Ruiz-Moreno, F M Ciriaco, M Kohmann, V R G Mercadante, G C Lamb, N DiLorenzo
ABSTRACT

Chitosan was evaluated as a feed additive to mitigate in vivo CH4 emissions in beef cattle. Twenty-four crossbred heifers (BW = 318 ± 35 kg) were used in a randomized block design replicated in 2 periods. The design included a 2 × 3 factorial arrangement of treatments, which included diet (high concentrate [HC] or low concentrate [LC]) and 0.0, 0.5, or 1.0% of chitosan inclusion (DM basis). Diets were offered ad libitum and individual intake was recorded. An in vitro experiment to analyze chitosan’s effect on fermentation parameters and gas production kinetics was performed. A diet effect (P < 0.01) was observed for CH4 emissions expressed as grams/day, grams/kilogram of BW0.75, and grams/kilogram of DMI. Heifers consuming the LC diet produced 130 g of CH4/d vs. 45 g of CH4/d in those consuming the HC diet. Incubation fluid pH increased linearly (P < 0.05) when chitosan was included in HC substrates. In vitro CH4 production was not affected (P > 0.10) by chitosan in HC substrate; however, when incubated with the LC substrate, CH4 production increased quadratically (P < 0.01) as chitosan inclusion increased. A digestibility marker × diet interaction occurred (P < 0.05) for DM, OM, CP, NDF, and ADF digestibility. Diet × chitosan interactions (P < 0.05) occurred for DM, OM, NDF, and ADF digestibility when Cr2O3 was used. When TiO2 was used, diet × chitosan interactions (P < 0.05) were observed for NDF and ADF. However, using indigestible NDF as an internal marker, DM and OM digestibility were improved (P < 0.05) by 21 and 19%, respectively, when chitosan was included in LC diets. In conclusion, feeding up to 1% of chitosan (DM basis) to heifers consuming a LC diet increased apparent total tract digestibility of nutrients. Enteric CH4 emissions were not affected by chitosan feeding, regardless of type of diet, and heifers consuming a 36% concentrate diet produced 2.6 times more methane per day than those consuming an 85% concentrate diet.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Carbon, mesoporous, less than 100 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Carbon, mesoporous, nanopowder, less than 500 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Carbon, mesoporous, nanopowder, graphitized, less than 250 ppm Al, Ti, Fe, Ni, Cu, and Zn combined
Sigma-Aldrich
Carbon, mesoporous
Sigma-Aldrich
Carbon, mesoporous, hydrophilic pore surface
Sigma-Aldrich
Urea-12C, 99.9 atom % 12C
Sigma-Aldrich
Urea solution, 40 % (w/v) in H2O
Sigma-Aldrich
Activated Charcoal Norit®, Norit® SX2, powder, from peat, multi-purpose activated charcoal, steam activated and acid washed
Sigma-Aldrich
Urea solution, BioUltra, ~8 M in H2O
Sigma-Aldrich
Activated Charcoal Norit®, Norit® PK 1-3, from peat, steam activated, granular
Sigma-Aldrich
Activated Charcoal Norit®, Norit® RB3, steam activated, rod
Sigma-Aldrich
Activated Charcoal Norit®, Norit® GAC 1240W, from coal, steam activated, granular
Sigma-Aldrich
Activated Charcoal Norit®, Norit® SX ultra, from peat, steam activated and acid washed, highly purified, powder
Supelco
Urea, 8 M (after reconstitution with 16 mL high purity water)
Sigma-Aldrich
Sulfur-32S, 99.9 atom % 32S
Sigma-Aldrich
Urea, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%, 99.0-101.0% (calc. on dry substance)
Sigma-Aldrich
Urea, BioUltra, Molecular Biology, 99% (T)
Sigma-Aldrich
Urea, suitable for electrophoresis
Sigma-Aldrich
Urea, meets USP testing specifications
Sigma-Aldrich
Urea, BioXtra, pH 7.5-9.5 (20 °C, 5 M in H2O)
Sigma-Aldrich
Urea, powder, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Urea, ACS reagent, 99.0-100.5%
Sigma-Aldrich
Urea, Vetec, reagent grade, 99%
Carbon - Vitreous, rod, 200mm, diameter 5.0mm, glassy carbon
Carbon - Vitreous, foil, 50x50mm, thickness 1.0mm, glassy carbon
Carbon - Vitreous, rod, 100mm, diameter 7.0mm, glassy carbon
Carbon - Vitreous, foil, 50x50mm, thickness 4.0mm, glassy carbon
Carbon - Vitreous, foam, 300x300mm, thickness 30mm, bulk density 0.05g/cm3, porosity 96.5%
Carbon - Vitreous, foil, 100x100mm, thickness 2.0mm, glassy carbon
Carbon - Vitreous, rod, 200mm, diameter 1.0mm, glassy carbon