Skip to Content
Merck
CN
  • Definitive proof of graphene hydrogenation by Clemmensen reduction: use of deuterium labeling.

Definitive proof of graphene hydrogenation by Clemmensen reduction: use of deuterium labeling.

Nanoscale (2015-05-28)
Zdeněk Sofer, Ondřej Jankovský, Alena Libánská, Petr Šimek, Michal Nováček, David Sedmidubský, Anna Macková, Romana Mikšová, Martin Pumera
ABSTRACT

Graphane is one of the most intensively studied derivatives of graphene. Here we demonstrate the evaluation of exact degree of graphene hydrogenation using the Clemmensen reduction reaction and deuterium labeling. The Clemmensen reduction reaction is based on application of zinc in an acid environment. It effectively reduces various functional groups (like ketones) present in graphite oxide. However, the mechanism of reduction is still unknown and elusive. Here we bring a major insight into the mechanisms of the Clemmensen reduction via deuterium labeling and the topochemical approach applied on graphite oxide. The use of deuterated reactants and the exact measurement of deuterium concentration in reduced/hydrogenated graphene by nuclear methods can be used for accurate estimation of C-H bond abundance in graphene. Various topochemical configurations of experiments showed that the reduction of a ketonic group proceeds in contact with the zinc metal by a carbenoid mechanism. Our results showed that the application of nuclear methods of isotope analysis in combination with deuterium labeling represents a very effective tool for investigation of graphene based materials. Our results demonstrate that graphene based materials can also be effectively used for the investigation of organic reaction mechanisms, because the robust structure of graphene allows the use of various spectroscopic techniques which could not be applied on small organic molecules.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium nitrate-14N, 99.95 atom % 14N
Sigma-Aldrich
Sodium nitrate, BioUltra, ≥99.0% (T)
Sigma-Aldrich
Hydrochloric acid solution, for amino acid analysis, ~6 M in H2O
Sigma-Aldrich
Barium nitrate, 99.999% trace metals basis
Sigma-Aldrich
Sulfuric acid, 99.999%
Sigma-Aldrich
Sodium nitrate, 99.995% trace metals basis
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Sigma-Aldrich
N,N-Dimethylformamide, anhydrous, 99.8%
Sigma-Aldrich
Sodium nitrate, ≥99.0%, suitable for plant cell culture
Sigma-Aldrich
Sodium nitrate, BioXtra, ≥99.0%
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, Molecular Biology
Sigma-Aldrich
N,N-Dimethylformamide, Molecular Biology, ≥99%
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Nitric-14N acid solution, ~10 N in H2O, 99.99 atom % 14N
Sigma-Aldrich
Hydrochloric acid solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Potassium permanganate, LR, ≥99%
Sigma-Aldrich
Nitric acid, ACS reagent, ≥90.0%
Sigma-Aldrich
Deuterium oxide, 99.8 atom % D
Sigma-Aldrich
Deuterium oxide, filtered, 99.8 atom % D
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D, contains 0.75 wt. % 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D, contains 1 % (w/w) 3-(trimethylsilyl)-1-propanesulfonic acid, sodium salt (DSS)
Sigma-Aldrich
Nitric acid, 70%, purified by redistillation, ≥99.999% trace metals basis
Sigma-Aldrich
Deuterium oxide, 99.9 atom % D, contains 0.05 wt. % 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt
Sigma-Aldrich
Deuterium oxide, 60 atom % D
Sigma-Aldrich
Deuterium oxide, 70 atom % D