Skip to Content
Merck
CN
  • Influence of intraspecific variability and abiotic factors on mycotoxin production in Penicillium roqueforti.

Influence of intraspecific variability and abiotic factors on mycotoxin production in Penicillium roqueforti.

International journal of food microbiology (2015-09-01)
Kévin Fontaine, Nolwenn Hymery, Marlène Z Lacroix, Sylvie Puel, Olivier Puel, Karim Rigalma, Vincent Gaydou, Emmanuel Coton, Jérôme Mounier
ABSTRACT

Penicillium roqueforti has the ability to produce secondary metabolites, including roquefortine C (ROQC) and mycophenolic acid (MPA). In a previous study, the presence of these mycotoxins, alone or in co-occurrence, has been reported in blue-veined cheese. A high variability of mycotoxin content has also been observed, although the majority of samples exhibited relatively low concentrations. The observed variability raises the question of the factors impacting ROQC and MPA production. In this context, the mycotoxigenic potential of 96 P. roqueforti strains (biotic factor) and the effect of some abiotic factors (pH, temperature, NaCl and O2 contents, and C/N ratio) on mycotoxin production were evaluated. A high intraspecific diversity, established via genotypic (RAPD) and phenotypic (FTIR) approaches, was observed. It was associated with mycotoxigenic potential variability and may thus explain part of the observed variability in mycotoxin content of blue-veined cheese. Moreover, a significant decrease of ROQC and MPA production was observed for conditions (temperature, C/N ratio, O2 and NaCl concentrations) encountered during cheese-making compared with optimal growth conditions. The results also highlighted that there was no significant effect of addition of ROQC amino-acid precursor on the production of both mycotoxins whereas a pH increase from 4.5 to 6.5 slightly reduced MPA but not ROQC production.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Propylene glycol monomethyl ether acetate, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Lactic acid, 88%, FCC
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Lactic acid, natural, ≥85%
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Lactic acid, meets USP testing specifications
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Sodium chloride solution, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, Vetec, reagent grade, 99%
Sigma-Aldrich
Lactic acid solution, ACS reagent, ≥85%
Sigma-Aldrich
DL-Lactic acid, 85 % (w/w), syrup