Skip to Content
Merck
CN
  • Chlorpyrifos Induces MLL Translocations Through Caspase 3-Dependent Genomic Instability and Topoisomerase II Inhibition in Human Fetal Liver Hematopoietic Stem Cells.

Chlorpyrifos Induces MLL Translocations Through Caspase 3-Dependent Genomic Instability and Topoisomerase II Inhibition in Human Fetal Liver Hematopoietic Stem Cells.

Toxicological sciences : an official journal of the Society of Toxicology (2015-07-23)
Chengquan Lu, Xiaohui Liu, Chang Liu, Jian Wang, Chunna Li, Qi Liu, Yachen Li, Shuangyue Li, Shu Sun, Jinsong Yan, Jing Shao
ABSTRACT

Household pesticide exposure during pregnancy has been associated with a more than 2-fold increased risk in infant leukemia, and chlorpyrifos (CPF) is among the most frequently applied insecticides. During early fetal development, liver is a hematopoietic organ with majority of cells being CD34(+) hematopoietic stem cells (CD34(+)HSC). The in utero injury to CD34(+)HSC has been known to underlie the pathogenesis of several blood disorders, often involving rearrangements of the mixed-lineage leukemia (MLL) gene on 11q23. In this study, we evaluated the leukemogenic potential of CPF in human fetal liver-derived CD34(+)HSC. Specifically, exposure to 10 μM CPF led to decrease in viability, inhibition in proliferation and induction of DNA double-strand breaks (DSBs) and occurrence of MLL(+) rearrangements. In particular, we observed CPF-mediated cell cycle disturbance as shown by G0/G1 arrest, in contrast to etoposide (VP-16), an anticancer drug used as a positive control and known to induce G2/M arrest. Further study on mechanisms underlying DNA DSBs and MLL(+) rearrangements revealed that CPF might act as topoisomerase II poison, a mechanism of action similar to VP-16. On the other hand, CPF was also shown to induce early apoptosis through active caspase-3 activation, a pathway known to underlie DNA DSBs and MLL(+) translocations. Our data indicate that in utero injury of CD34(+)HSC by CPF may contribute to the increased risk of infant leukemia. Future work will elucidate the mechanism and the type of CPF-induced MLL(+) translocations in HSC.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Trioctylphosphine, technical grade, 90%
Sigma-Aldrich
Trioctylphosphine, 97%
Sigma-Aldrich
Quercetin, ≥95% (HPLC), solid
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.6%, ReagentPlus®
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, Molecular Biology
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, Vetec, reagent grade, 99%
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimethyl sulfoxide, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Dimethyl sulfoxide, ACS reagent, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, puriss. p.a., dried, ≤0.02% water
Sigma-Aldrich
Dimethyl sulfoxide, puriss. p.a., ACS reagent, ≥99.9% (GC)