Skip to Content
Merck
CN
  • Extracellular matrix deposition of bone marrow stroma enhanced by macromolecular crowding.

Extracellular matrix deposition of bone marrow stroma enhanced by macromolecular crowding.

Biomaterials (2015-09-24)
Marina C Prewitz, Aline Stißel, Jens Friedrichs, Nicole Träber, Steffen Vogler, Martin Bornhäuser, Carsten Werner
ABSTRACT

Decellularized extracellular matrices (ECM) from in vitro cell cultures can serve as in vivo-like matrix scaffolds for modulating cell-ECM interactions. Macromolecular crowding (MMC), the supplementation of synthetic or naturally occurring molecules resulting in excluded volume effects (EVE), has been demonstrated to provide valuable options for recapitulating the physiological environment of cells during matrix secretion. Human mesenchymal stem cell (MSC)-derived ECM was produced upon supplementation of standard culture medium with three different macromolecules of various size (10-500 kDa). Matrix secretion, ECM morphology and composition were compared for matrices obtained from crowded and non-crowded MSC cultures. In the context of generating functional stem cell niches, the MSC-derived bone marrow mimetic ECM scaffolds were tested for their supportive effect to maintain and expand human hematopoietic stem and progenitor cells (HSPC) in vitro. MMC in combination with metabolic stimulation of MSC was found to result in tissue-specific, highly organized ECM capable of retaining glycosaminoglycans and growth factors to effectively build in vitro microenvironments that support HSPC expansion.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Tetrahydrofuran, inhibitor-free, purification grade
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Maleic anhydride, 99%
Sigma-Aldrich
Tetrahydrofuran, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
Sodium acetate, 99.995% trace metals basis
Sigma-Aldrich
Sodium acetate solution, BioUltra, Molecular Biology, ~3 M in H2O
Sigma-Aldrich
Acetic acid, suitable for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Tetrahydrofuran, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Sodium Acetate Anhydrous, >99%, FG
Sigma-Aldrich
Sodium acetate, anhydrous, Molecular Biology, ≥99%
Sigma-Aldrich
Sodium acetate, powder, BioReagent, suitable for electrophoresis, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Sodium acetate, meets USP testing specifications, anhydrous
Sigma-Aldrich
Sodium acetate, BioXtra, ≥99.0%
Sigma-Aldrich
Acetic acid, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.8-100.5%
Sigma-Aldrich
Sodium acetate, puriss. p.a., ACS reagent, reag. Ph. Eur., anhydrous
Sigma-Aldrich
Sodium acetate, anhydrous, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Sodium acetate, anhydrous, BioUltra, suitable for luminescence, Molecular Biology, ≥99.0% (NT)
Sigma-Aldrich
Acetic acid, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Sodium acetate, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.0%
Sigma-Aldrich
Tetrahydrofuran, ≥99.0%, contains 200-400 ppm BHT as inhibitor, ReagentPlus®
Sigma-Aldrich
Acetic acid, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Tetrahydrofuran, contains 250 ppm BHT as inhibitor, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.9%
Sigma-Aldrich
Acetic acid, glacial, puriss., 99-100%
Sigma-Aldrich
Sodium acetate, Vetec, reagent grade, 98%
Sigma-Aldrich
Acetic acid, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Tetrahydrofuran, contains 200-400 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
Acetic acid, glacial, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Sigma-Aldrich
Sodium acetate, ACS reagent, ≥99.0%