跳转至内容
Merck
CN
  • Calmodulin binding proteins in the membrane vesicles released during the acrosome reaction and in the perinuclear material in isolated acrosome reacted sperm heads.

Calmodulin binding proteins in the membrane vesicles released during the acrosome reaction and in the perinuclear material in isolated acrosome reacted sperm heads.

Tissue & cell (1994-12-01)
E O Hernández, R Trejo, A M Espinosa, A González, A Mújica
摘要

Calmodulin has been suggested as the Ca(2+)-mediator in diverse cellular functions via its interaction with a number of proteins in a calcium-dependent manner. Its participation in the acrosome reaction has been suggested based on its localization in the acrosome region, on the effects produced by calmodulin antagonists, and by the changes in calmodulin compartmentation observed to occur throughout guinea pig acrosome reaction. To define the role of calmodulin in the membrane fusion events that occur during the acrosome reaction, the identification of calmodulin-binding proteins, by the overlay technique with biotinylated or unmodified calmodulin, was made in the following sperm fractions: in the membrane vesicles released during the acrosome reaction, in the remaining perinuclear material of acrosome reacted sperm heads and in a total membrane fraction from intact spermatozoa. The membrane vesicles released after the acrosome reaction showed four major calmodulin-binding proteins, M(r)s 66, 95, 97 and 110 kDa. The perinuclear material showed a 31-34, 43 and 97 kDa calmodulin-binding polypeptides. The membrane fraction from intact sperm showed eleven calmodulin-binding proteins, M(r)s between 14-110 kDa. Most of the binding proteins detected by this method corresponded to the class of calcium-independent calmodulin-binding proteins but proteins which only interacted with calmodulin in a calcium-inhibited mode were also observed. No calcium-dependent calmodulin-binding proteins were detected in any of the fractions studied. A possible role of these binding proteins in calmodulin compartmentation is discussed. The potential role of these binding proteins in membrane fusion and in membrane receptor localization in the postacrosomal region remain to be defined.