跳转至内容
Merck
CN
  • Effects of ciprofloxacin on metabolic activity and algal biomass of urban stream biofilms.

Effects of ciprofloxacin on metabolic activity and algal biomass of urban stream biofilms.

The Science of the total environment (2020-01-17)
Morgan T Gallagher, Alexander J Reisinger
摘要

Pharmaceuticals and personal care products (PPCPs), such as the commonly prescribed antibiotic ciprofloxacin, are present and persistent in freshwaters, yet their effects on aquatic ecosystem functions at environmentally-relevant concentrations are rarely explored. Stream biofilms provide multiple functions in stream ecosystems, but their functional response to PPCP contaminants such as ciprofloxacin is unclear. To establish the effect of ciprofloxacin on aquatic biofilms, we colonized biofilms in situ on tiles (n = 80) at four sites along an urban stream in Gainesville, Florida, including two sites above and two sites below a wastewater treatment plant (WWTP). We then incubated the tiles and associated biofilms in the laboratory for 6 d exposing biofilms to either 0, 0.01, 0.1, or 1.0 μg/L (target concentrations) of ciprofloxacin. At the end of the 6 d laboratory exposure, we quantified gross primary production (GPP), respiration (R), and biomass (as chlorophyll a) of biofilms, and calculated response ratios for each response. All response metrics were significantly differed across sites (p < 0.01). Ciprofloxacin significantly decreased GPP (p < 0.05) regardless of treatment concentration, most notably at the site immediately below the WWTP, where there was no measurable GPP on any ciprofloxacin-treated biofilms. In contrast, respiration (R) was not significantly affected by ciprofloxacin, despite an apparent increase in R at the WWTP site. However, the WWTP site R was significantly different from the most upstream and downstream sites (p < 0.001) but was not significantly different from a nearby site upstream of the WWTP (p > 0.05). These results indicate that chronic exposure to ciprofloxacin through WWTP effluent can alter ecosystem functions performed by biofilms, which can have consequences for higher trophic levels and stream processes. By quantifying biofilm metabolic responses to ciprofloxacin exposure, this study supports the concept that pharmaceuticals and personal care products can induce sub-lethal effects on ecological processes at environmentally-relevant concentrations.

材料
Product Number
品牌
产品描述

Sigma-Aldrich
香叶基焦磷酸盐 铵盐, 1 mg/mL in methanol (:aqueous 10 mM NH4OH (7:3)), ≥95% (TLC)