跳转至内容
Merck
CN
  • Understanding the physics of hydrocolloids interaction using rheological, thermodynamic and functional properties: A case study on xanthan gum-cress seed gum blend.

Understanding the physics of hydrocolloids interaction using rheological, thermodynamic and functional properties: A case study on xanthan gum-cress seed gum blend.

International journal of biological macromolecules (2019-11-21)
Seyed M A Razavi, Ali Alghooneh
摘要

Some rheological, thermodynamic and functional properties of selected hydrocolloids (xanthan gum-cress seed gum (XG-CSG)) blends at different ratios (1-0, 3-1, 1-1, 1-3, 0-1) were characterized to understand physically the biopolymers interaction and networks. XG showed a greater rigidity (elastic modulus, G'LVE = 58.60 Pa), total structural strength (complex modulus, G*LVE = 70.69 Pa), yield stress (limiting value of stress, τL = 7.58 Pa), emulsion capacity (EC = 6.78%) and foam stability (FC = 18.92%) than CSG (G'LVE = 7.05 Pa, G*LVE = 8.53 Pa, τL = 1.44 Pa, EC = 86.48% and FC = 14.98%), respectively. Among blends, 3-1 XG-CSG showed the highest G*LVE, foaming stability (FS) and the extent of recovery (Rr%). The results were summarized using the clustering technique and principal component analyses. The coefficient of the interaction of some parameters, Cole-Cole plots and Gibbs free energy changes (ΔG) of predisturbed and intact networks were investigated. In samples with an intact network, greater compatibility directly related to the extent of synergistic interaction, while in predisturbed samples, the lower compatibility directly related to the extent of synergistic interaction. Although all blends were highly incompatible with antagonistic behavior, 1-1 XG-CSG showed the lowest incompatibility (ΔG = 8028.60 J/mol) among samples with intact structure, while at disrupted state, 1-3 XG-CSG showed the lowest incompatibility (ΔG = 158.6 J/mol).

材料
Product Number
品牌
产品描述

Sigma-Aldrich
黄原胶 来源于野油菜黄单胞菌