Merck
CN
  • Fatty acids influence the efficacy of lutein in the modulation of α-crystallin chaperone function: Evidence from selenite induced cataract rat model.

Fatty acids influence the efficacy of lutein in the modulation of α-crystallin chaperone function: Evidence from selenite induced cataract rat model.

Biochemical and biophysical research communications (2020-07-25)
Smitha Padmanabha, Baskaran Vallikannan
摘要

Loss of α-crystallin chaperone function results in the lens protein aggregation leading to cataract. In this study, we evaluated the efficacy of micellar lutein with different fatty acids in modulating α-crystallin chaperone function under selenite cataract conditions. Cataract was induced in rat pups by giving sodium selenite (25 μM/kg body weight) by IP. Lutein [(L), 1.3 μmol/kg body weight)] was given day before and five days after selenite injection as a micelle with 7.5 mM linoleic acid (LA), or 7.5 mM eicosapentaenoic acid (EPA)+docosahexaenoic acid (DHA) or 7.5 mM oleic acid (OA). Lens α-crystallins was purified, and its chaperone function and integrity was assessed. Cholesterol, calcium, calpain-2, procaspase-3, and expression of α-A and β-B1 crystallin in the lens of cataract and micellar lutein administered rats were evaluated. Cataract induction significantly (p < 0.05) decreased lens α-crystallin chaperone function. Cataract rats had increased cholesterol and calcium level, increased the expression of calpain-2, and α-A and β-B1 crystallin, and reduced the pro-caspase-3 level in the lens. However, micellar lutein administration significantly (p < 0.05) protected client proteins from aggregation via the modulation of calcium-dependent calpain-2 protease activity. The chaperone function of lens α-crystallins in rats administered micellar lutein with EPA + DHA was found to be highest when compared to OA and LA. Micellar lutein with unsaturated fatty acids beneficially modulates α-crystallin chaperone function. Among the fatty acids tested, micellar lutein with EPA + DHA exhibited superior effects, thereby offering a promising strategy for cataract management.

材料
货号
品牌
产品描述

牛胆酸钠, BRP, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Sephacryl®, 300-HR, MW range 10-1500 kDa (globular proteins), MW range 1-400 kDa (dextrans)