跳转至内容
Merck
CN

Four Key Steps Control Glycolytic Flux in Mammalian Cells.

Cell systems (2018-07-02)
Lukas Bahati Tanner, Alexander G Goglia, Monica H Wei, Talen Sehgal, Lance R Parsons, Junyoung O Park, Eileen White, Jared E Toettcher, Joshua D Rabinowitz
摘要

Altered glycolysis is a hallmark of diseases including diabetes and cancer. Despite intensive study of the contributions of individual glycolytic enzymes, systems-level analyses of flux control through glycolysis remain limited. Here, we overexpress in two mammalian cell lines the individual enzymes catalyzing each of the 12 steps linking extracellular glucose to excreted lactate, and find substantial flux control at four steps: glucose import, hexokinase, phosphofructokinase, and lactate export (and not at any steps of lower glycolysis). The four flux-controlling steps are specifically upregulated by the Ras oncogene: optogenetic Ras activation rapidly induces the transcription of isozymes catalyzing these four steps and enhances glycolysis. At least one isozyme catalyzing each of these four steps is consistently elevated in human tumors. Thus, in the studied contexts, flux control in glycolysis is concentrated in four key enzymatic steps. Upregulation of these steps in tumors likely underlies the Warburg effect.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
羟乙基哌嗪乙硫磺酸 溶液, 1 M, pH 7.0-7.6, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
抗 α-微管蛋白单克隆抗体 小鼠抗, clone DM1A, ascites fluid
Sigma-Aldrich
SB-505124 盐酸盐 水合物, ≥98% (HPLC)