Merck
CN
  • Reduced ER-mitochondria connectivity promotes neuroblastoma multidrug resistance.

Reduced ER-mitochondria connectivity promotes neuroblastoma multidrug resistance.

The EMBO journal (2022-02-26)
Jorida Çoku, David M Booth, Jan Skoda, Madison C Pedrotty, Jennifer Vogel, Kangning Liu, Annette Vu, Erica L Carpenter, Jamie C Ye, Michelle A Chen, Peter Dunbar, Elizabeth Scadden, Taekyung D Yun, Eiko Nakamaru-Ogiso, Estela Area-Gomez, Yimei Li, Kelly C Goldsmith, C Patrick Reynolds, Gyorgy Hajnoczky, Michael D Hogarty
摘要

Most cancer deaths result from progression of therapy resistant disease, yet our understanding of this phenotype is limited. Cancer therapies generate stress signals that act upon mitochondria to initiate apoptosis. Mitochondria isolated from neuroblastoma cells were exposed to tBid or Bim, death effectors activated by therapeutic stress. Multidrug-resistant tumor cells obtained from children at relapse had markedly attenuated Bak and Bax oligomerization and cytochrome c release (surrogates for apoptotic commitment) in comparison with patient-matched tumor cells obtained at diagnosis. Electron microscopy identified reduced ER-mitochondria-associated membranes (MAMs; ER-mitochondria contacts, ERMCs) in therapy-resistant cells, and genetically or biochemically reducing MAMs in therapy-sensitive tumors phenocopied resistance. MAMs serve as platforms to transfer Ca2+ and bioactive lipids to mitochondria. Reduced Ca2+ transfer was found in some but not all resistant cells, and inhibiting transfer did not attenuate apoptotic signaling. In contrast, reduced ceramide synthesis and transfer was common to resistant cells and its inhibition induced stress resistance. We identify ER-mitochondria-associated membranes as physiologic regulators of apoptosis via ceramide transfer and uncover a previously unrecognized mechanism for cancer multidrug resistance.

材料
货号
品牌
产品描述

Sigma-Aldrich
依托泊苷, A cell-permeable derivative of podophyllotoxin that acts as a topoisomerase II inhibitor (IC₅₀ = 59.2 µM) has major activity against a number of tumors, including germ cell neoplasms, small cell lung cancer, and malignant lymphoma.
Sigma-Aldrich
GW4869, ≥90% (NMR)
Sigma-Aldrich
抗-β微管蛋白抗体,小鼠单克隆 小鼠抗, ~2.0 mg/mL, clone AA2, purified from hybridoma cell culture
Sigma-Aldrich
Anti-Calnexin antibody, Mouse monoclonal, clone TO-5, purified from hybridoma cell culture
Sigma-Aldrich
Noxa小鼠单克隆抗体(114C307), liquid, clone 114C307, Calbiochem®