跳转至内容
Merck
CN
  • Molecular orientation of tropoelastin is determined by surface hydrophobicity.

Molecular orientation of tropoelastin is determined by surface hydrophobicity.

Biomacromolecules (2011-12-20)
Anton P Le Brun, John Chow, Daniel V Bax, Andrew Nelson, Anthony S Weiss, Michael James
摘要

Tropoelastin is the precursor of the extracellular protein elastin and is utilized in tissue engineering and implant technology by adapting the interface presented by surface-bound tropoelastin. The preferred orientation of the surface bound protein is relevant to biointerface interactions, as the C-terminus of tropoelastin is known to be a binding target for cells. Using recombinant human tropoelastin we monitored the binding of tropoelastin on hydrophilic silica and on silica made hydrophobic by depositing a self-assembled monolayer of octadecyl trichlorosilane. The layered organization of deposited tropoelastin was probed using neutron and X-ray reflectometry under aqueous and dried conditions. In a wet environment, tropoelastin retained a solution-like structure when adsorbed on silica but adopted a brush-like structure when on hydrophobized silica. The orientation of the surface-bound tropoelastin was investigated using cell binding assays and it was found that the C-terminus of tropoelastin faced the bulk solvent when bound to the hydrophobic surface, but a mixture of orientations was adopted when tropoelastin was bound to the hydrophilic surface. Drying the tropoelastin-coated surfaces irreversibly altered these protein structures for both hydrophilic and hydrophobic surfaces.