跳转至内容
Merck
CN

Tetracyanonickelate probes the active site of sulfur-free rhodanese.

The Journal of biological chemistry (1985-12-15)
S F Chow, P M Horowitz
摘要

Tetracyanonickelate (Ni(CN)4(2-)) was used as a probe for the active site of sulfur-free rhodanese (E) in physical and kinetic studies. Ni(CN)4(2-) quenches the intrinsic fluorescence as well as the fluorescence of enzyme-bound 2-anilinonaphthalene-8-sulfonic acid (2,8-ANS), an inhibitor that is competitive with respect to thiosulfate. A facile binding method based on centrifugation was developed to study Ni(CN)4(2-) binding to E. Binding studies performed using either of the electrophoretic variants A and B, fractionated by DE52 column chromatography, showed one high affinity Ni(CN)4(2-)-binding site in each species and additional weak sites on the more electropositive form A. The high affinity Ni(CN)4(2-) binding was corroborated by ultrafiltration binding (Kd = 3.95 +/- 0.35 microM), titration of intrinsic fluorescence (Kd = 1.8 +/- 0.11 microM), and displacement of enzyme-bound 2,8-ANS (Kd = 1.9 +/- 1.1 microM). A nonlinear least squares analysis of kinetic data collected under conditions used for the binding studies gave a Ni(CN)4(2-) inhibition constant of 21 microM. It is concluded that Ni(CN)4(2-) binds to sulfur-free rhodanese in solution near the active site as has been shown in x-ray crystal studies (Lijk, L. J., Kalk, K. H., Brandenburger, N. P., and Hol, W. G. J. (1983) Biochemistry 22, 2952-2957). In keeping with recent suggestions that the conformational state of the enzyme is dynamically determined, the discrepancy between Ni(CN)4(2-) affinity as determined by physical methods and that by kinetic methods suggests that Ni(CN)4(2-) may be able to distinguish the conformation of the working enzyme from those of the idle forms.