跳转至内容
Merck
CN
  • ERBB4 is over-expressed in human colon cancer and enhances cellular transformation.

ERBB4 is over-expressed in human colon cancer and enhances cellular transformation.

Carcinogenesis (2015-04-29)
Christopher S Williams, Jessica K Bernard, Michelle Demory Beckler, Dana Almohazey, Mary Kay Washington, Jesse J Smith, Mark R Frey
摘要

The ERBB4 receptor tyrosine kinase promotes colonocyte survival. Herein, we tested whether ERBB4's antiapoptotic signaling promotes transformation and colorectal tumorigenesis. ERBB4 alterations in a The Cancer Genome Atlas colorectal cancer (CRC) data set stratified survival, and in a combined Moffitt Cancer Center and Vanderbilt Medical Center CRC expression data set, ERBB4 message levels were increased at all tumor stages. Similarly, western blot and immunohistochemistry on additional CRC tissue banks showed elevated ERBB4 protein in tumors. ERBB4 was highly expressed in aggressive, dedifferentiated CRC cell lines, and its knockdown in LIM2405 cells reduced anchorage-independent colony formation. In nude mouse xenograft studies, ERBB4 alone was insufficient to induce tumor establishment of non-transformed mouse colonocytes, but its over-expression in cells harboring Apc(min) and v-Ha-Ras caused a doubling of tumor size. ERBB4-expressing xenografts displayed increased activation of survival pathways, including epidermal growth factor receptor and Akt phosphorylation and COX-2 expression, and decreased apoptotic signals. Finally, ERBB4 deletion from mouse intestinal epithelium impaired stem cell replication and in vitro enteroid establishment. In summary, we report that ERBB4 is over-expressed in human CRC, and in experimental systems enhances the survival and growth of cells driven by Ras and/or WNT signaling. Chronic ERBB4 over-expression in the context of, for example, inflammation may contribute to colorectal carcinogenesis. Tumors with high receptor levels are likely to have enhanced cell survival signaling through epidermal growth factor receptor, PI3K and COX-2. These results suggest ERBB4 as a novel therapeutic target in a subset of CRC.

材料
Product Number
品牌
产品描述

Sigma-Aldrich
硒, powder, −100 mesh, 99.99% trace metals basis
Sigma-Aldrich
硒, powder, −100 mesh, ≥99.5% trace metals basis
Sigma-Aldrich
硒, pellets, <5 mm particle size, ≥99.999% trace metals basis
Sigma-Aldrich
硒, pellets, <5 mm, ≥99.99% trace metals basis
硒, foil, 25x25mm, thickness 3mm, 99.95%