跳转至内容
Merck
CN
  • Hair cell synaptic dysfunction, auditory fatigue and thermal sensitivity in otoferlin Ile515Thr mutants.

Hair cell synaptic dysfunction, auditory fatigue and thermal sensitivity in otoferlin Ile515Thr mutants.

The EMBO journal (2016-10-13)
Nicola Strenzke, Rituparna Chakrabarti, Hanan Al-Moyed, Alexandra Müller, Gerhard Hoch, Tina Pangrsic, Gulnara Yamanbaeva, Christof Lenz, Kuan-Ting Pan, Elisabeth Auge, Ruth Geiss-Friedlander, Henning Urlaub, Nils Brose, Carolin Wichmann, Ellen Reisinger
摘要

The multi-C2 domain protein otoferlin is required for hearing and mutated in human deafness. Some OTOF mutations cause a mild elevation of auditory thresholds but strong impairment of speech perception. At elevated body temperature, hearing is lost. Mice homozygous for one of these mutations, Otof(I515T/I515T), exhibit a moderate hearing impairment involving enhanced adaptation to continuous or repetitive sound stimulation. In Otof(I515T/I515T) inner hair cells (IHCs), otoferlin levels are diminished by 65%, and synaptic vesicles are enlarged. Exocytosis during prolonged stimulation is strongly reduced. This indicates that otoferlin is critical for the reformation of properly sized and fusion-competent synaptic vesicles. Moreover, we found sustained exocytosis and sound encoding to scale with the amount of otoferlin at the plasma membrane. We identified a 20 amino acid motif including an RXR motif, presumably present in human but not in mouse otoferlin, which reduces the plasma membrane abundance of Ile515Thr-otoferlin. Together, this likely explains the auditory synaptopathy at normal temperature and the temperature-sensitive deafness in humans carrying the Ile515Thr mutation.