Merck
CN
  • Loss of dopamine phenotype among midbrain neurons in Lesch-Nyhan disease.

Loss of dopamine phenotype among midbrain neurons in Lesch-Nyhan disease.

Annals of neurology (2014-06-04)
Martin Göttle, Cecilia N Prudente, Rong Fu, Diane Sutcliffe, Hong Pang, Deborah Cooper, Emir Veledar, Jonathan D Glass, Marla Gearing, Jasper E Visser, H A Jinnah
ABSTRACT

Lesch-Nyhan disease (LND) is caused by congenital deficiency of the purine recycling enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt). Affected patients have a peculiar neurobehavioral syndrome linked with reductions of dopamine in the basal ganglia. The purpose of the current studies was to determine the anatomical basis for the reduced dopamine in human brain specimens collected at autopsy. Histopathological studies were conducted using autopsy tissue from 5 LND cases and 6 controls. Specific findings were replicated in brain tissue from an HGprt-deficient knockout mouse using immunoblots, and in a cell model of HGprt deficiency by flow-activated cell sorting (FACS). Extensive histological studies of the LND brains revealed no signs suggestive of a degenerative process or other consistent abnormalities in any brain region. However, neurons of the substantia nigra from the LND cases showed reduced melanization and reduced immunoreactivity for tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis. In the HGprt-deficient mouse model, immunohistochemical stains for TH revealed no obvious loss of midbrain dopamine neurons, but quantitative immunoblots revealed reduced TH expression in the striatum. Finally, 10 independent HGprt-deficient mouse MN9D neuroblastoma lines showed no signs of impaired viability, but FACS revealed significantly reduced TH immunoreactivity compared to the control parent line. These results reveal an unusual phenomenon in which the neurochemical phenotype of dopaminergic neurons is not linked with a degenerative process. They suggest an important relationship between purine recycling pathways and the neurochemical integrity of the dopaminergic phenotype.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dopamine hydrochloride
Sigma-Aldrich
4-Nitrophenyl phosphate disodium salt hexahydrate, tablet
Sigma-Aldrich
4-Nitrophenyl phosphate disodium salt hexahydrate, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
4-Nitrophenyl phosphate disodium salt hexahydrate, tablet
Sigma-Aldrich
4-Nitrophenyl phosphate disodium salt hexahydrate, tablet
Sigma-Aldrich
4-Nitrophenyl phosphate disodium salt hexahydrate, suitable for enzyme immunoassay, ≥99.0% (enzymatic)
Dopamine hydrochloride, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Phosphatase substrate, Suitable for manufacturing of diagnostic kits and reagents
Supelco
Dopamine hydrochloride, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Phosphatase substrate, 40 mg capsules
Sigma-Aldrich
Phosphatase substrate, 40 mg tablets
Sigma-Aldrich
Phosphatase substrate, 5 mg tablets
Sigma-Aldrich
Phosphatase substrate, powder
Sigma-Aldrich
Phosphatase substrate, 100 mg capsules
Sigma-Aldrich
Hematoxylin, certified by the Biological Stain Commission
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Methanol solution, contains 0.50 % (v/v) triethylamine
Sigma-Aldrich
Hematoxylin
Supelco
Dopamine hydrochloride solution, 1.0 mg/mL in methanol with 5% 1 M HCl (as free base), ampule of 1 mL, certified reference material, Cerilliant®
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, ≥99.0% (KT)
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%