Skip to Content
Merck
CN
  • Integrative cross-omics analysis in primary mouse hepatocytes unravels mechanisms of cyclosporin A-induced hepatotoxicity.

Integrative cross-omics analysis in primary mouse hepatocytes unravels mechanisms of cyclosporin A-induced hepatotoxicity.

Toxicology (2014-07-23)
Wim F P M Van den Hof, Anke Van Summeren, Arjen Lommen, Maarten L J Coonen, Karen Brauers, Marcel van Herwijnen, Will K W H Wodzig, Jos C S Kleinjans
ABSTRACT

The liver is responsible for drug metabolism and drug-induced hepatotoxicity is the most frequent reason for drug withdrawal, indicating that better pre-clinical toxicity tests are needed. In order to bypass animal models for toxicity screening, we exposed primary mouse hepatocytes for exploring the prototypical hepatotoxicant cyclosporin A. To elucidate the mechanisms underlying cyclosporin A-induced hepatotoxicity, we analyzed expression levels of proteins, mRNAs, microRNAs and metabolites. Integrative analysis of transcriptomics and proteomics showed that protein disulfide isomerase family A, member 4 was up-regulated on both the protein level and mRNA level. This protein is involved in protein folding and secretion in the endoplasmic reticulum. Furthermore, the microRNA mmu-miR-182-5p which is predicted to interact with the mRNA of this protein, was also differentially expressed, further emphasizing endoplasmic reticulum stress as important event in drug-induced toxicity. To further investigate the interaction between the significantly expressed proteins, a network was created including genes and microRNAs known to interact with these proteins and this network was used to visualize the experimental data. In total 6 clusters could be distinguished which appeared to be involved in several toxicity related processes, including alteration of protein folding and secretion in the endoplasmic reticulum. Metabonomic analyses resulted in 5 differentially expressed metabolites, indicative of an altered glucose, lipid and cholesterol homeostasis which can be related to cholestasis. Single and integrative analyses of transcriptomics, proteomics and metabonomics reveal mechanisms underlying cyclosporin A-induced cholestasis demonstrating that endoplasmic reticulum stress and the unfolded protein response are important processes in drug-induced liver toxicity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Supelco
N,N-Dimethylformamide, analytical standard
Sigma-Aldrich
Sodium chloride solution, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
Sodium bicarbonate, tested according to Ph. Eur.
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Sigma-Aldrich
Sodium chloride, BioUltra, Molecular Biology, ≥99.5% (AT)
Supelco
Chloroform, analytical standard
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Trypan Blue, Dye content 60 %, ≥80% (HPLC)
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
N,N-Dimethylformamide, anhydrous, 99.8%
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium bicarbonate, powder, BioReagent, Molecular Biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sodium bicarbonate, BioXtra, 99.5-100.5%
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Trypan Blue, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
N,N-Dimethylformamide, Molecular Biology, ≥99%
Supelco
Methanol, analytical standard