Skip to Content
Merck
CN
  • Programmable transdermal clonidine delivery through voltage-gated carbon nanotube membranes.

Programmable transdermal clonidine delivery through voltage-gated carbon nanotube membranes.

Journal of pharmaceutical sciences (2014-05-03)
Caroline Strasinger, Kalpana S Paudel, Ji Wu, Dana Hammell, Raghotham R Pinninti, Bruce J Hinds, Audra Stinchcomb
ABSTRACT

Oral dosage forms and traditional transdermal patches are inadequate for complex clonidine therapy dosing schemes, because of the variable dose/flux requirement for the treatment of opioid withdrawal symptoms. The purpose of this study was to evaluate the in vitro transdermal flux changes of clonidine in response to alterations in carbon nanotube (CNT) delivery rates by applying various electrical bias. Additional skin diffusion studies were carried out to demonstrate the therapeutic feasibility of the system. This study demonstrated that application of a small electrical bias (-600 mV) to the CNT membrane on the skin resulted in a 4.7-fold increase in clonidine flux as compared with no bias (0 mV) application. The high and low clonidine flux values were very close to the desired variable flux of clonidine for the treatment of opioid withdrawal symptoms. Therapeutic feasibility studies demonstrated that CNT membrane served as the rate-limiting step to clonidine diffusion and lag and transition times were suitable for the clonidine therapy. Skin elimination studies revealed that clonidine depletion from the skin would not negatively affect clonidine therapy. Overall, this study showed that clonidine administration difficulties associated with the treatment of opiate withdrawal symptoms can be reduced with the programmable CNT membrane transdermal system.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
D.E.R. 332, used as embedding medium
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Potassium phosphate tribasic, reagent grade, ≥97%
Sigma-Aldrich
Sodium chloride, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioUltra, Molecular Biology, ≥99.5% (AT)
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Sigma-Aldrich
Sodium chloride solution, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Supelco
Residual Solvent - Acetonitrile(solution in DMSO), Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Acetonitrile(Neat), Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Sodium chloride, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sodium chloride, Vetec, reagent grade, 99%
Sigma-Aldrich
Acetonitrile, Preparateur, ≥99.9% (GC), One-time steel-plastic (SP) drum
Sigma-Aldrich
Ammonium hydroxide solution, BioUltra, ~1 M NH3 in H2O (T)
Sigma-Aldrich
Ammonium bicarbonate, BioUltra, ≥99.5% (T)
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Potassium hydride, 30 wt % dispersion in mineral oil
Supelco
Acetonitrile, analytical standard