Skip to Content
Merck
CN
  • Differences in the rate of oestrogen-induced apoptosis in breast cancer by oestradiol and the triphenylethylene bisphenol.

Differences in the rate of oestrogen-induced apoptosis in breast cancer by oestradiol and the triphenylethylene bisphenol.

British journal of pharmacology (2014-05-14)
I E Obiorah, V C Jordan
ABSTRACT

Triphenylethylene (TPE)-like compounds were the first agents to be used in the treatment of metastatic breast cancer in postmenopausal women. Although structurally related to the anti-oestrogen, 4-hydroxytamoxifen, TPEs possess oestrogenic properties in fully oestrogenized breast cancer cells but do not induce apoptosis with short-term treatment in long-term oestrogen-deprived breast cancer cells. This study determined the differential effects of bisphenol, a TPE, on growth and apoptosis based on the modulation of the shape of the ligand-oestrogen receptor complex. Apoptotic flow cytometric studies were used to evaluate apoptosis over time. Proliferation of the breast cancer cells was assessed using DNA quantification and cell cycle analysis. Real-time PCR was performed to quantify mRNA levels of apoptotic genes. Regulation of cell cycle and apoptotic genes was determined using PCR-based arrays. Bisphenol induced an up-regulation of cell cycle genes similar to those induced by 17β oestradiol (E2 ). Unlike the changes induced by E2 that occur after 24 h, the apoptosis evoked by bisphenol occurred after 4 days, with quantifiable apoptotic changes noted at 6 days. A prolonged up-regulation of endoplasmic reticulum stress and inflammatory stress response genes was observed with subsequent activation of apoptosis-related genes in the second week of treatment with bisphenol. The bisphenol: ERα complex induces delayed biological effects on the growth and apoptosis of breast cancer cells. Both the shape of the complex and the duration of treatment control the initiation of apoptosis.

MATERIALS
Product Number
Brand
Product Description

Supelco
Dehydrated Alcohol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Propidium iodide, ≥94.0% (HPLC)
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
Supelco
Ethanol standards 10% (v/v), 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
Propidium iodide, ≥94% (HPLC)
Sigma-Aldrich
BPTPE, ≥98% (HPLC)
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Ethyl alcohol, Pure 190 proof, for molecular biology
Sigma-Aldrich
Ethanol, puriss. p.a., absolute, ≥99.8% (GC)
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Ethanol, absolute, sales not in Germany, ≥99.8% (vol.)
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, meets USP testing specifications, Excise Tax-free, Permit for use required
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS reagent, meets USP testing specifications, Excise Tax-free, Permit for use required
Sigma-Aldrich
Ethyl alcohol, Pure, 160 proof, Excise Tax-free, Permit for use required
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Ethanol, tested according to Ph. Eur.
Sigma-Aldrich
Propidium iodide solution
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, BioUltra, Molecular Biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
Ethyl alcohol, Pure 200 proof, Molecular Biology
Supelco
Ethanol, standard for GC