Skip to Content
Merck
CN
  • Combination chemotherapy of doxorubicin, all-trans retinoic acid and low molecular weight heparin based on self-assembled multi-functional polymeric nanoparticles.

Combination chemotherapy of doxorubicin, all-trans retinoic acid and low molecular weight heparin based on self-assembled multi-functional polymeric nanoparticles.

Nanotechnology (2015-03-17)
Ting Zhang, Hui Xiong, Fatima Zohra Dahmani, Li Sun, Yuanke Li, Li Yao, Jianping Zhou, Jing Yao
ABSTRACT

Based on the complementary effects of doxorubicin (DOX), all-trans retinoic acid (ATRA) and low molecular weight heparin (LMWH), the combination therapy of DOX, ATRA and LMWH was expected to exert the enhanced anti-tumor effects and reduce the side effects. In this study, amphiphilic LMWH-ATRA conjugate was synthesized for encapsulating the DOX. In this way, DOX, ATRA and LMWH were assembled into a single nano-system by both chemical and physical modes to obtain a novel anti-tumor targeting drug delivery system that can realize the simultaneous delivery of multiple drugs with different properties to the tumor. LMWH-ATRA nanoparticles exhibited good loading capacities for DOX with excellent physico-chemical properties, good biocompatibility, and good differentiation-inducing activity and antiangiogenic activity. The drug-loading capacity was up to 18.7% with an entrapment efficiency of 78.8%. It was also found that DOX-loaded LMWH-ATRA nanoparticles (DHR nanoparticles) could be efficiently taken up by tumor cells via endocytic pathway, and mainly distributed in cytoplasm at first, then transferred into cell nucleus. Cell viability assays suggested that DHR nanoparticles maintained the cytotoxicity effect of DOX on MCF-7 cells. Moreover, the in vivo imaging analysis indicated that DiR-loaded LMWH-ATRA nanoparticles could target the tumor more effectively as compared to free DiR. Furthermore, DHR nanoparticles possessed much higher anticancer activity and reduced side effects compared to free drugs solution. These results suggested that DHR nanoparticles could be considered as a promising targeted delivery system for combination cancer chemotherapy with lower adverse effects.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Triethylamine, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Triethylamine, for amino acid analysis, ≥99.5% (GC)
Supelco
N,N-Dimethylformamide, analytical standard
Sigma-Aldrich
Formamide, BioUltra, Molecular Biology, ≥99.5% (T)
Sigma-Aldrich
Formamide, ACS reagent, ≥99.5%
Sigma-Aldrich
N,N-Dimethylformamide, anhydrous, 99.8%
Sigma-Aldrich
Triethylamine, ampule, ≥99.5% (GC)
Sigma-Aldrich
Triethylamine, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Triethylamine, ≥99.5%
Sigma-Aldrich
Formamide, ≥99.5% (GC), BioReagent, Molecular Biology
Sigma-Aldrich
Triethylamine, ≥99%
Sigma-Aldrich
N,N-Dimethylformamide, Molecular Biology, ≥99%
Sigma-Aldrich
Doxorubicin hydrochloride, 98.0-102.0% (HPLC)
Sigma-Aldrich
Formamide, spectrophotometric grade, ≥99%
Sigma-Aldrich
N,N-Dimethylformamide, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Formamide, Vetec, reagent grade, 98%
Supelco
Triethylamine, analytical standard
Supelco
Dimethylformamide, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
N,N-Dimethylformamide, biotech. grade, ≥99.9%
Sigma-Aldrich
N,N-Dimethylformamide, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Formamide, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
N,N-Dimethylformamide, ACS reagent, ≥99.8%
Sigma-Aldrich
N,N-Dimethylformamide, ReagentPlus®, ≥99%
Sigma-Aldrich
1,2-Dichloroethane, anhydrous, 99.8%
Sigma-Aldrich
N-Hydroxysuccinimide, purum, ≥97.0% (T)
Sigma-Aldrich
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide, ≥97.0% (T)
Sigma-Aldrich
N-Hydroxysuccinimide, 98%
Sigma-Aldrich
Creatine, anhydrous
Supelco
Formamide solution, suitable for NMR (reference standard), 90% in DMSO-d6 (99.9 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
Formamide solution, suitable for NMR (reference standard), 90% in DMSO-d6 (99.9 atom % D), NMR tube size 10 mm × 8 in.