Skip to Content
Merck
CN
  • Biocatalytic carboxylation of phenol derivatives: kinetics and thermodynamics of the biological Kolbe-Schmitt synthesis.

Biocatalytic carboxylation of phenol derivatives: kinetics and thermodynamics of the biological Kolbe-Schmitt synthesis.

The FEBS journal (2015-02-06)
Lorenzo Pesci, Silvia M Glueck, Pavel Gurikov, Irina Smirnova, Kurt Faber, Andreas Liese
ABSTRACT

Microbial decarboxylases, which catalyse the reversible regioselective ortho-carboxylation of phenolic derivatives in anaerobic detoxification pathways, have been studied for their reverse carboxylation activities on electron-rich aromatic substrates. Ortho-hydroxybenzoic acids are important building blocks in the chemical and pharmaceutical industries and are currently produced via the Kolbe-Schmitt process, which requires elevated pressures and temperatures (≥ 5 bar, ≥ 100 °C) and often shows incomplete regioselectivities. In order to resolve bottlenecks in view of preparative-scale applications, we studied the kinetic parameters for 2,6-dihydroxybenzoic acid decarboxylase from Rhizobium sp. in the carboxylation- and decarboxylation-direction using 1,2-dihydroxybenzene (catechol) as starting material. The catalytic properties (K(m), V(max)) are correlated with the overall thermodynamic equilibrium via the Haldane equation, according to a reversible random bi-uni mechanism. The model was subsequently verified by comparing experimental results with simulations. This study provides insights into the catalytic behaviour of a nonoxidative aromatic decarboxylase and reveals key limitations (e.g. substrate oxidation, CO2 pressure, enzyme deactivation, low turnover frequency) in view of the employment of this system as a 'green' alternative to the Kolbe-Schmitt processes.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Imidazole, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Sodium chloride solution, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Sigma-Aldrich
Sodium chloride, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Imidazole, ReagentPlus®, 99%
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Pyrocatechol, purified by sublimation, ≥99.5%
Sigma-Aldrich
Imidazole, ≥99% (titration), crystalline
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Pyrocatechol, ≥99%
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Imidazole, Molecular Biology, ≥99% (titration)
Sigma-Aldrich
Imidazole, ACS reagent, ≥99% (titration)
Sigma-Aldrich
Imidazole, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Imidazole, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Imidazole, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99%
Supelco
Sodium chloride, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Imidazole, United States Pharmacopeia (USP) Reference Standard