Skip to Content
Merck
CN
  • Biocatalytic carboxylation of phenol derivatives: kinetics and thermodynamics of the biological Kolbe-Schmitt synthesis.

Biocatalytic carboxylation of phenol derivatives: kinetics and thermodynamics of the biological Kolbe-Schmitt synthesis.

The FEBS journal (2015-02-06)
Lorenzo Pesci, Silvia M Glueck, Pavel Gurikov, Irina Smirnova, Kurt Faber, Andreas Liese
ABSTRACT

Microbial decarboxylases, which catalyse the reversible regioselective ortho-carboxylation of phenolic derivatives in anaerobic detoxification pathways, have been studied for their reverse carboxylation activities on electron-rich aromatic substrates. Ortho-hydroxybenzoic acids are important building blocks in the chemical and pharmaceutical industries and are currently produced via the Kolbe-Schmitt process, which requires elevated pressures and temperatures (≥ 5 bar, ≥ 100 °C) and often shows incomplete regioselectivities. In order to resolve bottlenecks in view of preparative-scale applications, we studied the kinetic parameters for 2,6-dihydroxybenzoic acid decarboxylase from Rhizobium sp. in the carboxylation- and decarboxylation-direction using 1,2-dihydroxybenzene (catechol) as starting material. The catalytic properties (K(m), V(max)) are correlated with the overall thermodynamic equilibrium via the Haldane equation, according to a reversible random bi-uni mechanism. The model was subsequently verified by comparing experimental results with simulations. This study provides insights into the catalytic behaviour of a nonoxidative aromatic decarboxylase and reveals key limitations (e.g. substrate oxidation, CO2 pressure, enzyme deactivation, low turnover frequency) in view of the employment of this system as a 'green' alternative to the Kolbe-Schmitt processes.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Imidazole, ReagentPlus®, 99%
Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Imidazole, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Pyrocatechol, purified by sublimation, ≥99.5%
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Imidazole, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Imidazole, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Pyrocatechol, ≥99%
Sigma-Aldrich
Sodium chloride, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Imidazole, ACS reagent, ≥99% (titration)
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Imidazole, ≥99% (titration), crystalline
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Imidazole, Molecular Biology, ≥99% (titration)
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioUltra, Molecular Biology, ≥99.5% (AT)
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Sigma-Aldrich
Sodium chloride solution, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Ondansetron impurity E, European Pharmacopoeia (EP) Reference Standard
USP
Imidazole, United States Pharmacopeia (USP) Reference Standard
Imidazole, European Pharmacopoeia (EP) Reference Standard