Skip to Content
Merck
CN
  • Evaluation of polycaprolactone matrices for sustained vaginal delivery of nevirapine in the prevention of heterosexual HIV transmission.

Evaluation of polycaprolactone matrices for sustained vaginal delivery of nevirapine in the prevention of heterosexual HIV transmission.

Journal of pharmaceutical sciences (2014-05-29)
Nhung Dang, Haran Sivakumaran, David Harrich, P Nicholas Shaw, Allan G A Coombes
ABSTRACT

Nevirapine (NVP) was loaded in polycaprolactone (PCL) matrices to produce vaginal inserts with the aim of preventing HIV transmission. NVP dispersions in PCL were prepared, at 10% (w/w) theoretical loading, measured with respect to the PCL content of the matrices, in the form of (1) NVP only, (2) a physical mixture of NVP with polyethylene glycol (PEG) 6000 or (c) a solid dispersion (SD) with PEG produced by co-dissolution in ethanol. Characterisation of SD by differential scanning calorimetry and attenuated total reflectance-Fourier transform infrared spectroscopy suggested transformation of the crystalline structure of NVP to an amorphous form which consequently increased the dissolution rate of drug. A low-loading efficiency of 13% was obtained for NVP-loaded matrices and less than 20% for matrices prepared using physical mixtures of drug and PEG. The loading efficiency was improved significantly to around 40% when a 1:4 NVP-PEG SD was used for matrix production. After 30 days, 40% of the drug content was released from NVP-loaded matrices, 55% from matrices containing 1:4 NVP-PEG physical mixtures and 60% from matrices loaded with 1:4 NVP-PEG SDs. The in vitro anti-viral activity of released NVP was assessed using a luciferase reporter gene assay following the infection of HeLa cells with pseudo-typed HIV-1. NVP released from PCL matrices in simulated vaginal fluid retained over 75% anti-HIV activity compared with the non-formulated NVP control. In conclusion, 1:4 NVP-PEG SDs when loaded in PCL matrices increase drug loading efficiency and improve release behaviour.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Supelco
Potassium hydroxide concentrate, 0.1 M KOH in water (0.1N), Eluent concentrate for IC
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Acetone, natural, ≥97%
Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Acetone, ≥99%, FCC, FG
Supelco
Glycerin, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Dehydrated Alcohol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Supelco
Acetone, analytical standard
Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Sigma-Aldrich
Acetic acid, suitable for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Lactic acid, 88%, FCC
Sigma-Aldrich
Lactic acid, natural, ≥85%
Sigma-Aldrich
Urea-12C, 99.9 atom % 12C
Sigma-Aldrich
Urea solution, 40 % (w/v) in H2O
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
Sigma-Aldrich
Sodium chloride, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)