Skip to Content
Merck
CN
  • Repression of engrailed 2 inhibits the proliferation and invasion of human bladder cancer in vitro and in vivo.

Repression of engrailed 2 inhibits the proliferation and invasion of human bladder cancer in vitro and in vivo.

Oncology reports (2015-03-31)
Yunfei Li, Haitao Liu, Caiyong Lai, Zexuan Su, Baoli Heng, Shuangquan Gao
ABSTRACT

Engrailed 2 (EN2) is a member of the homeobox gene family. Many studies suggest that overexpression of EN2 protein may be associated with tumor development, including bladder cancer (BC). However, to date, the mechanisms of how EN2 functions to promote BC progression remain elusive. The present study introduced RNAi to silence the expression of EN2 in BC cell lines. In vitro invasion and migration assays and in vivo experiments were carried out to examine the functions of EN2 in BC invasion and metastasis. The results of the present study indicated that EN2 was significantly expressed in BC cells. Ectopic expression of EN2 in normal urothelial cells significantly enhanced cellular proliferation and invasion, but inhibited cellular apoptosis. EN2 knockdown significantly promoted cell cycle arrest and apoptosis of BC cells with inhibition of proliferation and invasion in vitro as well as EN2 knockdown decreased the tumor growth of BC. The tumor growth was decreased by regulation of the cell cycle, apoptosis and epithelial-mesenchymal transition-related proteins, with inhibition of metastasis to the liver and lung in vivo. Furthermore, EN2 knockdown significantly decreased the levels of pAkt-473, pAkt-308 and phosphatidylinositol 3-kinase (PI3K), whereas EN2 knockdown increased the expression of PTEN in vitro. Taken together, EN2 may be a candidate oncogene in BC by activating the PI3K/Akt pathway and inhibiting PTEN, and may be a potential therapeutic target for the treatment of BC.

MATERIALS
Product Number
Brand
Product Description

Supelco
Glycine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
Methanol, suitable for NMR (reference standard)
Supelco
Glycine, Pharmaceutical Secondary Standard; Certified Reference Material
SAFC
Glycine
Sigma-Aldrich
Glycine, puriss. p.a., reag. Ph. Eur., buffer substance, 99.7-101% (calc. to the dried substance)
Sigma-Aldrich
Glycine, tested according to Ph. Eur.
Sigma-Aldrich
HEPES, BioUltra, Molecular Biology, ≥99.5% (T)
Sigma-Aldrich
Glycine, meets analytical specification of Ph. Eur., BP, USP, 99-101% (based on anhydrous substance)
Sigma-Aldrich
Glycine, ACS reagent, ≥98.5%
Supelco
Methanol, analytical standard
Sigma-Aldrich
Glycine, BioUltra, Molecular Biology, ≥99.0% (NT)
Sigma-Aldrich
Glycine, 99%, FCC
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Glycine, suitable for electrophoresis, ≥99%
Sigma-Aldrich
Glycine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, ≥98.5%
Sigma-Aldrich
Glycine, BioXtra, ≥99% (titration)
Sigma-Aldrich
Sodium pyruvate, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
Bicinchoninic acid disodium salt hydrate, ≥98% (HPLC)
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Sodium pyruvate, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Sodium pyruvate, BioXtra, ≥99%
Sigma-Aldrich
Glycine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
Sodium pyruvate, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium pyruvate, Hybri-Max, powder, suitable for hybridoma
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
Methanol, purification grade, 99.8%
Supelco
Glycine, analytical standard, for nitrogen determination according to Kjeldahl method
USP
Glycine, United States Pharmacopeia (USP) Reference Standard