产品名称
铟, foil, thickness 1.0 mm, 99.999% trace metals basis
InChI key
APFVFJFRJDLVQX-UHFFFAOYSA-N
InChI
1S/In
SMILES string
[In]
vapor pressure
<0.01 mmHg ( 25 °C)
assay
99.999% trace metals basis
form
foil
resistivity
8.37 μΩ-cm
thickness
1.0 mm
mp
156.6 °C (lit.)
density
7.3 g/mL at 25 °C (lit.)
Quality Level
正在寻找类似产品? 访问 产品对比指南
Preparation Note
4.6g = 25×25mm
signalword
Danger
hcodes
Hazard Classifications
STOT RE 1 Inhalation
target_organs
Lungs
存储类别
6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects
wgk
WGK 1
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
dust mask type N95 (US), Eyeshields, Gloves
Thirumaleshwara N Bhat et al.
Journal of nanoscience and nanotechnology, 13(1), 498-503 (2013-05-08)
The thermal oxidation process of the indium nitride (InN) nanorods (NRs) was studied. The SEM studies reveal that the cracked and burst mechanism for the formation of indium oxide (In2O3) nanostructures by oxidizing the InN NRs at higher temperatures. XRD
Vahid A Akhavan et al.
ChemSusChem, 6(3), 481-486 (2013-02-13)
Thin-film photovoltaic devices (PVs) were prepared by selenization using oleylamine-capped Cu(In,Ga)Se2 (CIGS) nanocrystals sintered at a high temperature (>500 °C) under Se vapor. The device performance varied significantly with [Ga]/[In+Ga] content in the nanocrystals. The highest power conversion efficiency (PCE) observed
Annick Bay et al.
Optics express, 21 Suppl 1, A179-A189 (2013-02-15)
In this paper the design, fabrication and characterization of a bioinspired overlayer deposited on a GaN LED is described. The purpose of this overlayer is to improve light extraction into air from the diode's high refractive-index active material. The layer
Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots for tumor cell-targeted imaging.
Dawei Deng et al.
Physical chemistry chemical physics : PCCP, 15(14), 5078-5083 (2013-03-02)
Exploring the synthesis and biomedical applications of biocompatible quantum dots (QDs) is currently one of the fastest growing fields of nanotechnology. Hence, in this work, we present a facile approach to produce water-soluble (cadmium-free) quaternary Zn-Ag-In-S (ZAIS) QDs. Their efficient
Ray-Hua Horng et al.
Optics express, 21 Suppl 1, A1-A6 (2013-02-15)
A wing-type imbedded electrodes was introduced into the lateral light emitting diode configuration (WTIE-LEDs) to reduce the effect of light shading of electrode in conventional sapphire-based LEDs (CSB-LEDs). The WTIE-LEDs with double-side roughened surface structures not only can eliminate the
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持