跳转至内容
Merck
CN

772402

PBDTTT-CF

别名:

Poly[1-(6-{4,8-bis[(2-ethylhexyl)oxy]-6-methylbenzo[1,2-b:4,5-b′]dithiophen-2-yl}-3-fluoro-4-methylthieno[3,4-b]thiophen-2-yl)-1-octanone]

登录 查看组织和合同定价。

选择尺寸


关于此项目

经验公式(希尔记法):
C40H51FO3S4 ]n
化学文摘社编号:
分子量:
727.09 (as monomer)
NACRES:
NA.23
UNSPSC Code:
12352103
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助

description

Band gap: 1.77 eV

form

powder

mol wt

average Mw 53,000-83,000 by GPC

orbital energy

HOMO -5.22 eV , LUMO -3.45 eV 

semiconductor properties

P-type (mobility=7×10−4 cm2/V·s)

General description

PBDTTT-CF is a low band-gap conducting polymer which contains dialkoxyl benzodithiophene and fluorine substituted thieno[3,4-b]thiophene groups. It can be used as a donor material with a power conversion efficiency of 6.77%.

Application

Low band gap polymer; for high-efficiency organic solar cells (OPVs) application

OPV Device Structure: ITO/PEDOT:PSS/PBDTTT-CF :PC71BM/Ca/Al; achieving power conversion efficiency as high as 6.77%; as certified by the National Renewable Energy Laboratory (NREL).
PBDTTT-CF is mainly used in the fabrication of polymeric solar cells and organic solar cells.

存储类别

11 - Combustible Solids

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


历史批次信息供参考:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Synthesis and photovoltaic properties of an alternating phenylenevinylene copolymer with substituted-triphenylamine units along the backbone for bulk heterojunction and dye-sensitized solar cells
Mikroyannidis JA, et al.
Journal of Power Sources, 196(4), 2364-2372 (2011)
A polybenzo [1, 2-b: 4, 5-b?] dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells
Huo L, et al.
Angewandte Chemie (International Edition in English), 122(8), 1542-1545 (2010)
Towards organic solar cells without the hole transporting layer on the plasmon-enhanced ITO electrode
Vojtko A, et al.
physica status solidi (a), 212(4), 867-876 (2015)
Polymer solar cells with enhanced open-circuit voltage and efficiency
Chen H, et al.
Nature Photonics, 3(11), 649-649 (2009)
Polymer solar cells with enhanced open-circuit voltage and efficiency
Nature Photonics, 3, 649-653 (2009)

商品

The development of high-performance conjugated organic molecules and polymers has received widespread attention in industrial and academic research.

Professor Chen (Nankai University, China) and his team explain the strategies behind their recent record-breaking organic solar cells, reaching a power conversion efficiency of 17.3%.

Organic photovoltaics (OPVs) represent a low-cost, lightweight, and scalable alternative to conventional solar cells. While significant progress has been made in the development of conventional bulk heterojunction cells, new approaches are required to achieve the performance and stability necessary to enable commercially successful OPVs.

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系客户支持