跳转至内容
Merck
CN

921556

Sigma-Aldrich

Graphene oxide

organic solvent dispersible

别名:

Graphene oxide, Graphene oxide for non-aqueous solvent dispersions, Graphene oxide for organic solvent dispersions

登录查看公司和协议定价

选择尺寸


关于此项目

线性分子式:
CxHyOz
化学文摘社编号:
UNSPSC代码:
12352119
NACRES:
NA.23
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助

表单

solid

溶解性

2-propanol: soluble 2 mg/mL (IPA)
DMSO: soluble 2 mg/mL (dimethyl sulfoxide)
NMP: soluble 2 mg/mL (1-methyl-2-pyrrolidinone)
THF: soluble 2 mg/mL (tetrahydrofuran )
dichloromethane: soluble 2 mg/mL (DCM)
ethyl acetate: soluble 2 mg/mL (EtOAc)
soluble (dispersible in organic solvents)

一般描述

This graphene oxide product has been formulated to make the graphene oxide dispersible in many anhydrous organic solvents including dichloromethane (DCM), dimethyl sulfoxide (DMSO), 2-propanol (IPA), tetrahydrofuran (THF), and 1-methyl-2-pyrrolidinone (NMP).

应用

Our reformulated non-covalently modified graphene oxide allows you to expore the unique properties of graphene oxide in new ways that were not previously possible. You can use our hydrophobic graphene oxide to make composites with polymers and other nanomaterials that are incompatiable with or insoluble in water. Additionaly, graphene oxide may be reduced to give electrically conductive composites that have been used in applications such as fuel cells, photocatalysis, supercapacitors, lithium-ion batteries, sodium-ion batteries, and lithium sulfur batteries.

象形图

Exclamation mark

警示用语:

Warning

危险声明

危险分类

Acute Tox. 4 Oral

储存分类代码

11 - Combustible Solids

WGK

WGK 3

法规信息

新产品
此项目有

历史批次信息供参考:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes.
Zhang K, et al.
Chemistry of Materials, 22(4), 1392-1401 (2010)
Yongming Sun et al.
ACS nano, 5(9), 7100-7107 (2011-08-10)
Self-assembled hierarchical MoO(2)/graphene nanoarchitectures have been fabricated on a large scale through a facile solution-phase process and subsequent reduction of the Mo-precursor/graphene composite. The as-formed MoO(2)/graphene nanohybrid as an anode material for lithium-ion batteries exhibits not only a highly reversible
Lamuel David et al.
ACS nano, 8(2), 1759-1770 (2014-01-23)
We study the synthesis and electrochemical and mechanical performance of layered free-standing papers composed of acid-exfoliated few-layer molybdenum disulfide (MoS2) and reduced graphene oxide (rGO) flakes for use as a self-standing flexible electrode in sodium-ion batteries. Synthesis was achieved through
Liwen Ji et al.
Journal of the American Chemical Society, 133(46), 18522-18525 (2011-10-25)
The loss of sulfur cathode material as a result of polysulfide dissolution causes significant capacity fading in rechargeable lithium/sulfur cells. Here, we use a chemical approach to immobilize sulfur and lithium polysulfides via the reactive functional groups on graphene oxide.
Sheng Chen et al.
ACS nano, 4(5), 2822-2830 (2010-04-14)
A composite of graphene oxide supported by needle-like MnO(2) nanocrystals (GO-MnO(2) nanocomposites) has been fabricated through a simple soft chemical route in a water-isopropyl alcohol system. The formation mechanism of these intriguing nanocomposites investigated by transmission electron microscopy and Raman

商品

Advanced technologies for energy conversion and storage aim to improve performance and reduce environmental impact.

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系客户支持