SMILES string
c1ccc(cc1)-c2ccnc3c2ccc4c(ccnc34)-c5ccccc5
InChI
1S/C24H16N2/c1-3-7-17(8-4-1)19-13-15-25-23-21(19)11-12-22-20(14-16-26-24(22)23)18-9-5-2-6-10-18/h1-16H
InChI key
DHDHJYNTEFLIHY-UHFFFAOYSA-N
grade
sublimed grade
description
µe ≈ 3.0 x 10-4 cm2V-1s-1
Electron Transport Layer
assay
≥99% (H-NMR)
form
powder
Quality Level
greener alternative product characteristics
Catalysis
Learn more about the Principles of Green Chemistry.
sustainability
Greener Alternative Product
loss
0.5% TGA, >240ºC (weight loss)
mp
218-220 °C (lit.)
solubility
THF: soluble
chloroform: soluble
dichloromethane: soluble
λmax
272 nm in THF
fluorescence
λem 379 nm in THF
orbital energy
HOMO 6.4 eV
LUMO 3.0 eV
greener alternative category
正在寻找类似产品? 访问 产品对比指南
Application
Intermolecular charge-transfer states at the interface between electron donating (D) and accepting (A) materials are crucial for the operation of organic electronics, such as solar cells, transistors and organic light-emitting diodes (OLEDs). The 4,7-Diphenyl-1,10-phenanthroline, also known as Bathophenanthroline (Bphen) enables use as Electron Transport / Hole Blocking Layer (ETL / HBL) in your organic electronic devices. It has a μe of about 3.0 x 10-4 cm2 V−1 s−1 and is solution-processable.
Features and Benefits
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Green Chemistry. This product has been enhanced for catalytic efficiency. Click here for more information.
存储类别
11 - Combustible Solids
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
法规信息
新产品
此项目有
Emissive and charge-generating donor-acceptor interfaces for organic optoelectronics with low voltage losses
Ullbrich, S. et al.
Nature Materials, 18, 459-464 (2019)
Light outcoupling efficiency enhancement in organic light emitting diodes using an organic scattering layer
Grover Rakhi, et al.
Physica Status Solidi RRL: Rapid Research Letters, 8, 81?85-81?85 (2014)
Strong light-matter coupling for reduced photon energy losses in organic photovoltaics
Nikolis, V. et al.
Nature Communications, 10, 1-8 (2019)
Highly efficient inverted organic light-emitting devices adopting solution-processed double electron-injection layers.
Chen, Y. et al.
Organic Electronics, 66, 1-6 (2019)
Initial photochemical stability in perovskite solar cells based on the Cu electrode and the appropriate charge transport layers
Tan, Wenjun, et al.
Synthetic Metals, 246, 101-107 (2018)
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持