S7602
丁香醛
98%
别名:
3,5-二甲氧基-4-羟基苯甲醛, 4-羟基-3,5-二甲氧基苯甲醛
方案
98%
沸点
192-193 °C/14 mmHg (lit.)
mp
110-113 °C (lit.)
SMILES字符串
COc1cc(C=O)cc(OC)c1O
InChI
1S/C9H10O4/c1-12-7-3-6(5-10)4-8(13-2)9(7)11/h3-5,11H,1-2H3
InChI key
KCDXJAYRVLXPFO-UHFFFAOYSA-N
正在寻找类似产品? 访问 产品对比指南
警示用语:
Warning
危险声明
危险分类
Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3
靶器官
Respiratory system
储存分类代码
11 - Combustible Solids
WGK
WGK 3
闪点(°F)
Not applicable
闪点(°C)
Not applicable
个人防护装备
dust mask type N95 (US), Eyeshields, Gloves
Laura Mendoza et al.
Enzyme and microbial technology, 49(5), 478-484 (2011-11-25)
This paper presents the use of a membrane-integrated reactor system with recycling of laccase and mediator for azo dye decolorization. From initial screening of different laccases and mediators, Trametes versicolor laccase and syringaldehyde provided the best system for decolorization. Decolorization
Ani Tejirian et al.
Enzyme and microbial technology, 48(3), 239-247 (2011-11-25)
Phenolics derived from lignin and other plant components can pose significant inhibition on enzymatic conversion of cellulosic biomass materials to useful chemicals. Understanding the mechanism of such inhibition is of importance for the development of viable biomass conversion technologies. In
Daniela Vieira Cortez et al.
Bioresource technology, 101(6), 1858-1865 (2009-10-14)
The effect of lignin degradation products liberated during chemical hydrolysis of lignocellulosic materials on xylose-to-xylitol bioconversion by Candida guilliermondii FTI 20037 was studied. Two aromatic aldehydes (vanillin and syringaldehyde) were selected as model compounds. A two-level factorial design was employed
Esteban D Babot et al.
Bioresource technology, 102(12), 6717-6722 (2011-04-23)
The ability of two natural phenols to act as mediators of the recombinant Myceliophthora thermophila laccase (MtL) in eucalypt-pulp delignification was investigated. After alkaline peroxide extraction, the properties of the enzymatically-treated pulps improved with respect to the control. The pulp
Rogério S Pereira et al.
Journal of industrial microbiology & biotechnology, 38(1), 71-78 (2010-09-08)
The inhibitory action of acetic acid, ferulic acid, and syringaldehyde on metabolism of Candida guilliermondii yeast during xylose to xylitol bioconversion was evaluated. Assays were performed in buffered and nonbuffered semidefined medium containing xylose as main sugar (80.0 g/l), supplemented
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持