General description
ZnO is a semiconductor with a wide band gap. Point defects in the structure define the electrical conductivity of the oxide. Doping these point defects with Al, In and Ga gives in a highly conductive n –type zinc oxide. Defect free ZnO can also be achieved by annealing the oxide in reducing environment. It also exhibits excellent optical transmission properties. Doped ZnO can form transparent conductors which may be useful in various energy-based applications.1
Application
用于制备NaZnSiO3OH,一种新型手性骨架材料,其在离子交换、吸附或催化方面具有潜在的应用价值。
signalword
Warning
hcodes
pcodes
Hazard Classifications
Aquatic Acute 1 - Aquatic Chronic 1
存储类别
11 - Combustible Solids
wgk
WGK 2
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
Eyeshields, Gloves
法规信息
新产品
此项目有
Rizwan Wahab et al.
Journal of biomedical nanotechnology, 9(7), 1181-1189 (2013-08-06)
This paper reports the synthesis and characterization of ZnO nanoparticles prepared by soft chemical process. The nanoparticles of ZnO possess wurtzite hexagonal phase and were used for the induction of cell death in malignant human T98G gliomas, KB epithermoids and
Alexander Lange et al.
Journal of nanoscience and nanotechnology, 13(7), 5209-5214 (2013-08-02)
Organic solar cells are a favorable alternative to their inorganic counterparts because the functional layers of these devices can be processed with printing or coating on a large scale. In this study, a novel polymer was synthesized, blended with fullerene
Dadong Guo et al.
Journal of nanoscience and nanotechnology, 13(6), 3769-3777 (2013-07-19)
Nanomaterials, including zinc oxide (ZnO) nanoparticles, are being developed for a variety of commercial products. Recent reports showed that cells exposed to ZnO nanoparticles produced severe cytotoxicity accompanied by oxidative stress and genotoxicity. To understand the possible mechanism underlying oxidative
Min Su Kim et al.
Journal of nanoscience and nanotechnology, 13(5), 3582-3585 (2013-07-19)
Metal catalyst-free ZnO nanorods were grown on PS with buffer layers grown at 450 degrees C by plasma-assisted molecular beam epitaxy. Room temperature and temperature-dependent photoluminescence were carried out to investigate the optical properties of the ZnO nanorods with the
Chia-Chi Wang et al.
Journal of nanoscience and nanotechnology, 13(6), 3880-3888 (2013-07-19)
Zinc oxide nanoparticles (nano-ZnO) are one of the most commonly used nanomaterials in industrial products including paints, cosmetics, and medical materials. Since ZnO is a well-known photocatalyst, it is important to further study if nano-ZnO cause phototoxic effect on skin
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持