biological source
rabbit
conjugate
unconjugated
antibody form
affinity isolated antibody
antibody product type
primary antibodies
clone
polyclonal
form
buffered aqueous solution
mol wt
antigen 102 kDa
species reactivity
rat, mouse, human
concentration
~1 mg/mL
technique(s)
ELISA: 1:5000, western blot: 1:500-1:1000
NCBI accession no.
UniProt accession no.
shipped in
wet ice
storage temp.
−20°C
target post-translational modification
unmodified
Quality Level
Gene Information
human ... ZZZ3(26009)
General description
Anti-ZZZ3 Antibody detects endogenous levels of total ZZZ3 protein.
Immunogen
The antiserum was produced against synthesized peptide derived from human ZZZ3.
Immunogen Range: 341-390
Immunogen Range: 341-390
Features and Benefits
Evaluate our antibodies with complete peace of mind. If the antibody does not perform in your application, we will issue a full credit or replacement antibody. Learn more.
Physical form
Rabbit IgG in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol.
Disclaimer
Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.
未找到合适的产品?
试试我们的产品选型工具.
存储类别
10 - Combustible liquids
wgk
nwg
flash_point_f
Not applicable
flash_point_c
Not applicable
法规信息
常规特殊物品
此项目有
Wenyi Mi et al.
Nature communications, 8(1), 1088-1088 (2017-10-24)
Recognition of modified histones by "reader" proteins constitutes a key mechanism regulating diverse chromatin-associated processes important for normal and neoplastic development. We recently identified the YEATS domain as a novel acetyllysine-binding module; however, the functional importance of YEATS domain-containing proteins
Antoine Graindorge et al.
Nature communications, 10(1), 5317-5317 (2019-11-24)
Regulatory RNAs exert their cellular functions through RNA-binding proteins (RBPs). Identifying RNA-protein interactions is therefore key for a molecular understanding of regulatory RNAs. To date, RNA-bound proteins have been identified primarily through RNA purification followed by mass spectrometry. Here, we
Wenyi Mi et al.
Nature communications, 9(1), 3759-3759 (2018-09-16)
Recognition of histones by epigenetic readers is a fundamental mechanism for the regulation of chromatin and transcription. Most reader modules target specific post-translational modifications on histones. Here, we report the identification of a reader of histone H3, the ZZ-type zinc
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持