Application
L-二氢乳清酸(DHO)用作二氢乳清酸脱氢酶(DHODH)检测的底物。
Biochem/physiol Actions
L-二氢乳清酸(DHO)是二氢乳清酸脱氢酶(DHODH)的底物,而DHODH是一种从头合成嘧啶的酶。抑制剂对DHOH的抑制作用会导致上游代谢物DHO大量积累和尿苷水平下降。因此,DHO和尿苷可作为嘧啶合成的生物标志物,用于临床开发DHOH抑制剂。
signalword
Warning
hcodes
Hazard Classifications
Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3
target_organs
Respiratory system
存储类别
11 - Combustible Solids
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
dust mask type N95 (US), Eyeshields, Gloves
Feng Yin et al.
Journal of pharmaceutical and biomedical analysis, 192, 113669-113669 (2020-10-30)
Uridine and L-dihydroorotate (DHO) are important intermediates of de novo as well as salvage pathways for the biosynthesis of pyrimidines, which are the building blocks of nucleic acids - DNA and RNA. These metabolites are known to be significant biomarkers
Synergy and Target Promiscuity Drive Structural Divergence in Bacterial Alkylquinolone Biosynthesis.
Yihan Wu et al.
Cell chemical biology, 24(12), 1437-1444 (2017-10-17)
Microbial natural products are genetically encoded by dedicated biosynthetic gene clusters (BGCs). A given BGC usually produces a family of related compounds that share a core but contain variable substituents. Though common, the reasons underlying this divergent biosynthesis are in
O Björnberg et al.
Archives of biochemistry and biophysics, 391(2), 286-294 (2001-07-05)
The flavoprotein dihydroorotate dehydrogenase (DHOD) catalyzes the oxidation of dihydroorotate to orotate. Dihydrooxonate is an analogue of dihydroorotate in which the C5 carbon is substituted by a nitrogen atom. We have investigated dihydrooxonate as a substrate of three DHODs, each
Laura Martorano et al.
Disease models & mechanisms, 12(3) (2019-03-06)
Mitochondrial DNA depletion syndromes (MDS) are a group of rare autosomal recessive disorders with early onset and no cure available. MDS are caused by mutations in nuclear genes involved in mitochondrial DNA (mtDNA) maintenance, and characterized by both a strong
Mihwa Lee et al.
Journal of molecular biology, 348(3), 523-533 (2005-04-14)
Escherichia coli dihydroorotase has been crystallized in the presence of the product, L-dihydroorotate (L-DHO), and the structure refined at 1.9A resolution. The structure confirms that previously reported (PDB entry 1J79), crystallized in the presence of the substrate N-carbamyl-D,L-aspartate (D, L-CA-asp)
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持