Merck
CN
Search Within

M34006

应用筛选条件
关键词:'M34006'
显示 1-30 共 36 条结果 关于 "M34006" 范围 论文
D An et al.
Journal of bacteriology, 176(24), 7462-7467 (1994-12-01)
Pseudomonas sp. strain JS42 utilizes 2-nitrotoluene (2NT) as the sole source of carbon and energy for growth. Intact cells catalyze the oxidation of 2NT to 3-methylcatechol and nitrite in a reaction that requires molecular oxygen. Cell extracts oxidized 2NT to
P Cerdan et al.
Journal of bacteriology, 176(19), 6074-6081 (1994-10-01)
Catechol 2,3-dioxygenase encoded by TOL plasmid pWW0 of Pseudomonas putida consists of four identical subunits, each containing one ferrous ion. The enzyme catalyzes ring cleavage of catechol, 3-methylcatechol, and 4-methylcatechol but shows only weak activity toward 4-ethylcatechol. Two mutants of
Yi-Zhou Gao et al.
Applied and environmental microbiology, 86(4) (2019-12-08)
All nitroarene dioxygenases reported so far originated from Nag-like naphthalene dioxygenase of Gram-negative strains, belonging to group III of aromatic ring-hydroxylating oxygenases (RHOs). Gram-positive Rhodococcus sp. strain ZWL3NT utilizes 3-nitrotoluene (3NT) as the sole source of carbon, nitrogen, and energy
M G Wallis et al.
The Biochemical journal, 266(2), 605-609 (1990-03-01)
A purification procedure has been developed for an extradiol dioxygenase expressed in Escherichia coli, which was originally derived from a Pseudomonas putida strain able to grow on toluidine. Physical and kinetic properties of the enzyme have been investigated. The enzyme
U Riegert et al.
Journal of bacteriology, 181(16), 4812-4817 (1999-08-10)
The 2,3-dihydroxybiphenyl dioxygenase from Sphingomonas sp. strain BN6 (BphC1-BN6) differs from most other extradiol dioxygenases by its ability to oxidize 3-chlorocatechol to 3-chloro-2-hydroxymuconic semialdehyde by a distal cleavage mechanism. The turnover of different substrates and the effects of various inhibitors
L E Hüsken et al.
Journal of biotechnology, 88(1), 11-19 (2001-05-30)
Pseudomonas putida MC2 is a solvent-tolerant strain that accumulates 3-methylcatechol. In aqueous media, 10 mM of 3-methylcatechol was produced and production was limited by 3-methylcatechol toxicity to the biocatalyst. Production levels increased by introduction of a second, organic phase that
Yi-Zhou Gao et al.
Environmental microbiology, 23(2), 1053-1065 (2020-10-27)
The chemical synthesis intermediate 3,4-dichloronitrobenzene (3,4-DCNB) is an environmental pollutant. Diaphorobacter sp. strain JS3050 utilizes 3,4-DCNB as a sole source of carbon, nitrogen and energy. However, the molecular determinants of its catabolism are poorly understood. Here, the complete genome of
J Wery et al.
Applied microbiology and biotechnology, 54(2), 180-185 (2000-09-01)
The aim of the study was to investigate whether toxic fine chemical production can be improved using the solvent-tolerant Pseudomonas putida S12 in a two-liquid-phase system consisting of aqueous media and a water-immiscible octanol phase with production of 3-methylcatechol from
Leonie E Hüsken et al.
Journal of biotechnology, 96(3), 281-289 (2002-06-05)
Bioproduction of 3-methylcatechol from toluene by Pseudomonas putida MC2 was studied in the presence of an additional 1-octanol phase. This solvent was used to supply the substrate and extract the product, in order to keep the aqueous concentrations low. A
Mary E Kauffman et al.
Journal of microbiological methods, 55(3), 801-805 (2003-11-11)
3-hydroxyphenylacetylene (3-HPA) served as a novel, activity-dependent, fluorogenic and chromogenic probe for bacterial enzymes known to degrade toluene via meta ring fission of the intermediate, 3-methylcatechol. By this direct physiological analysis, cells grown with an aromatic substrate to induce the
Anna Andolfi et al.
Journal of natural products, 75(10), 1785-1791 (2012-10-11)
Two isolates of Neofusicoccum australe belonging to ITS haplotypes H4 and H1 and associated with grapevine cordon dieback and branch dieback of Phoenicean juniper, respectively, have been shown to produce in vitro structurally different secondary metabolites. From the strain BOT48
J Y Lee et al.
Journal of bacteriology, 181(9), 2953-2957 (1999-04-28)
We identified and characterized a methyl transfer activity of the toluate cis-dihydrodiol (4-methyl-3,5-cyclohexadiene-cis-1, 2-diol-1-carboxylic acid) dehydrogenase of the TOL plasmid pWW0 towards toluene cis-dihydrodiol (3-methyl-4,5-cyclohexadiene-cis-1, 2-diol). When the purified enzyme from the recombinant Escherichia coli containing the xylL gene was
Takashi Hatta et al.
The Journal of biological chemistry, 278(24), 21483-21492 (2003-04-04)
A novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl-1,2-dioxygenase (BphC_JF8) catalyzing the meta-cleavage of the hydroxylated biphenyl ring was purified from the thermophilic biphenyl and naphthalene degrader, Bacillus sp. JF8, and the gene was cloned. The native and recombinant BphC enzyme was purified to
Sergio Bordel et al.
Applied microbiology and biotechnology, 74(4), 857-866 (2006-12-01)
The influence of toluene concentration on the specific growth rate, cellular yield, specific CO(2), and metabolite production by Pseudomonas putida F1 (PpF1) was investigated. Both cellular yield and specific CO(2) production remained constant at 1.0 +/- 0.1 g biomass dry
Hyo Je Cho et al.
The Journal of biological chemistry, 285(45), 34643-34652 (2010-09-03)
A meta-cleavage pathway for the aerobic degradation of aromatic hydrocarbons is catalyzed by extradiol dioxygenases via a two-step mechanism: catechol substrate binding and dioxygen incorporation. The binding of substrate triggers the release of water, thereby opening a coordination site for
Bo Xu et al.
Journal of basic microbiology, 57(10), 883-895 (2017-07-27)
Catechol 1,2-dioxygenase is the key enzyme that catalyzes the cleavage of the aromatic ring of catechol. We explored the genetic diversity of catechol 1,2-dioxygenase in the fecal microbial metagenome by PCR with degenerate primers. A total of 35 gene fragments
Arved E Reising et al.
Journal of chromatography. A, 1436, 118-132 (2016-02-10)
Lateral transcolumn heterogeneities and the presence of larger voids in a packing (comparable to the particle size) can limit the preparation of efficient chromatographic columns. Optimizing and understanding the packing process provides keys to better packing structures and column performance.
Kristina M Mahan et al.
Applied and environmental microbiology, 81(1), 309-319 (2014-10-26)
Acidovorax sp. strain JS42 uses 2-nitrotoluene as a sole source of carbon and energy. The first enzyme of the degradation pathway, 2-nitrotoluene 2,3-dioxygenase, adds both atoms of molecular oxygen to 2-nitrotoluene, forming nitrite and 3-methylcatechol. All three mononitrotoluene isomers serve
Arved E Reising et al.
Journal of chromatography. A, 1504, 71-82 (2017-05-18)
Column wall effects and the formation of larger voids in the bed during column packing are factors limiting the achievement of highly efficient columns. Systematic variation of packing conditions, combined with three-dimensional bed reconstruction and detailed morphological analysis of column
Raúl Muñoz et al.
Biodegradation, 19(6), 897-908 (2008-04-15)
The response of Pseudomonas putida F1 to process fluctuations and operational failures during toluene biodegradation was evaluated in a chemostat suspended growth bioreactor. The ability of P. putida F1 to rapidly increase its specific toluene degradation capacity resulted in no
Sikandar I Mulla et al.
3 Biotech, 7(5), 320-320 (2017-09-29)
Synthetic pyrethroid-fenvalerate-is one of the most widespread toxic pollutants and has adverse effect on living systems. However, little is known about its biotransformation mechanism in different microorganisms. To elucidate the pathway that might be involved in the catabolism of fenvalerate
U Riegert et al.
Journal of bacteriology, 180(11), 2849-2853 (1998-06-06)
A 2,3-dihydroxybiphenyl 1,2-dioxygenase from the naphthalenesulfonate-degrading bacterium Sphingomonas sp. strain BN6 oxidized 3-chlorocatechol to a yellow product with a strongly pH-dependent absorption maximum at 378 nm. A titration curve suggested (de)protonation of an ionizable group with a pKa of 4.4.
S Murakami et al.
Gene, 185(1), 49-54 (1997-01-31)
Gram+ aniline-assimilating Rhodococcus erythropolis AN-13 (AN-13) produces catechol 1,2-dioxygenase (C12O) showing high enzymatic activities for 3- and 4-methylcatechols [Aoki et al. (1984) Agric. Biol. Chem. 48, 2087-2095]. A 3.0 kb Sau3AI fragment carrying a gene encoding C12O(catA) was cloned by
Nicholas S Kruyer et al.
Scientific reports, 10(1), 13367-13367 (2020-08-10)
Microbial production of adipic acid from lignin-derived monomers, such as catechol, is a greener alternative to the petrochemical-based process. Here, we produced adipic acid from catechol using catechol 1,2-dioxygenase (CatA) and a muconic acid reductase (MAR) in Escherichia coli. As
Dhan Prakash et al.
BMC biotechnology, 10, 49-49 (2010-07-01)
Substituted catechols are important precursors for large-scale synthesis of pharmaceuticals and other industrial products. Most of the reported chemical synthesis methods are expensive and insufficient at industrial level. However, biological processes for production of substituted catechols could be highly selective
Salimeh Amidi et al.
Iranian journal of pharmaceutical research : IJPR, 12(Suppl), 91-103 (2013-11-20)
Electrochemical oxidation of some selected catechol derivatives, using cyclic voltammetry, in the presence of different 2-aryl-1,3-indandiones as nucleophiles, resulted in electrochemical synthesis of new 1,3- indandione derivatives in an undivided cell in good yield and purity. A Michael addition mechanism
L E Hüsken et al.
Bioprocess and biosystems engineering, 26(1), 11-17 (2003-09-19)
Pseudomonas putida MC2 produces 3-methylcatechol from toluene in aqueous medium. A second phase of 1-octanol may improve total product accumulation. To optimise the design of such a biphasic process, a process model was developed, both for one- and two-phase applications.
M S Shields et al.
Applied and environmental microbiology, 57(7), 1935-1941 (1991-07-01)
Pseudomonas cepacia G4 possesses a novel pathway of toluene catabolism that is shown to be responsible for the degradation of trichloroethylene (TCE). This pathway involves conversion of toluene via o-cresol to 3-methylcatechol. In order to determine the enzyme of toluene
U Riegert et al.
Journal of bacteriology, 183(7), 2322-2330 (2001-03-13)
The 2,3-dihydroxybiphenyl 1,2-dioxygenase from Sphingomonas xenophaga strain BN6 (BphC1) oxidizes 3-chlorocatechol by a rather unique distal ring cleavage mechanism. In an effort to improve the efficiency of this reaction, bphC1 was randomly mutated by error-prone PCR. Mutants which showed increased
Katarzyna Hupert-Kocurek et al.
Acta biochimica Polonica, 59(3), 345-351 (2012-07-25)
This study aimed at characterization of a new catechol 2,3-dioxygenase isolated from a Gram-positive bacterium able to utilize phenol as the sole carbon and energy source. Planococcus sp. strain S5 grown on 1 or 2 mM phenol showed activity of
1/2