跳转至内容
Merck
CN
  • Luteolin-7-O-glucoside protects dopaminergic neurons by activating estrogen-receptor-mediated signaling pathway in MPTP-induced mice.

Luteolin-7-O-glucoside protects dopaminergic neurons by activating estrogen-receptor-mediated signaling pathway in MPTP-induced mice.

Toxicology (2019-08-06)
Liyue Qin, Ziyu Chen, Liu Yang, Hailian Shi, Hui Wu, Beibei Zhang, Weiqi Zhang, Qi Xu, Fei Huang, Xiaojun Wu
摘要

Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by the degeneration of dopaminergic neurons in substantia nigra (SN). Accumulating evidences implicate the beneficial role of estrogen in the therapy of PD. In the present study, the protective function of luteolin-7-O-glucoside (LUT-7G), a natural flavonoid, was investigated in 1-methyl-4-phenylpyridinium (MPP+) treated SH-SY5Y cells and 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) induced mice. Pre-treatment of LUT-7G increased the viability and reduced the apoptosis of SH-SY5Y cells treated by MPP+. At molecular level, the Bcl-2/Bax ratio was increased, while the expression of cleaved caspase 3 was markedly lessened. Moreover, LUT-7G increased the expression of estrogen receptor (ER), ERα and ERβ, and enhanced the activation of ERK1/2/STAT3/c-Fos that could be abolished by ER antagonists. Furthermore, in vivo experiment indicated that pre-treatment of LUT-7G improved the bradykinesia, and enhanced the muscle strength as well as the balancing capacity of mice treated with MPTP. And LUT-7G prevented the injury of TH positive cells in substantia nigra and increased TH positive nerve fibers in striatum. In addition, pre-treatment of LUT-7G also significantly diminished the MPTP-induced gliosis in substantia nigra. LUT-7G effectively protected dopaminergic neurons against MPP+ or MPTP-induced toxicity, probably by activating the ER-mediated signaling pathway. Our findings explore the therapeutic potential of LUT-7G for PD therapy.