跳转至内容
Merck
CN
  • Dexamethasone-induced Krüppel-like factor 9 expression promotes hepatic gluconeogenesis and hyperglycemia.

Dexamethasone-induced Krüppel-like factor 9 expression promotes hepatic gluconeogenesis and hyperglycemia.

The Journal of clinical investigation (2019-04-30)
Anfang Cui, Heng Fan, Yinliang Zhang, Yujie Zhang, Dong Niu, Shuainan Liu, Quan Liu, Wei Ma, Zhufang Shen, Lian Shen, Yanling Liu, Huabing Zhang, Yuan Xue, Ying Cui, Qinghua Wang, Xinhua Xiao, Fude Fang, Jichun Yang, Qinghua Cui, Yongsheng Chang
摘要

Chronic glucocorticoid therapy has serious side effects, including diabetes and fatty liver. However, the molecular mechanisms responsible for steroid-induced diabetes remain largely enigmatic. Here, we show that hepatic Krüppel-like factor 9 (Klf9) gene expression is induced by dexamethasone and fasting. The overexpression of Klf9 in primary hepatocytes strongly stimulated Pgc1a gene expression through direct binding to its promoter, thereby activating the gluconeogenic program. However, Klf9 mutation abolished the stimulatory effect of dexamethasone on cellular glucose output. Adenovirus-mediated overexpression of KLF9 in the mouse liver markedly increased blood glucose levels and impaired glucose tolerance. Conversely, both global Klf9-mutant mice and liver-specific Klf9-deleted mice displayed fasting hypoglycemia. Moreover, the knockdown of Klf9 in the liver in diabetic mouse models, including ob/ob and db/db mice, markedly lowered fasting blood glucose levels. Notably, hepatic Klf9 deficiency in mice alleviated hyperglycemia induced by chronic dexamethasone treatment. These results suggest a critical role for KLF9 in the regulation of hepatic glucose metabolism and identify hepatic induction of KLF9 as a mechanism underlying glucocorticoid therapy-induced diabetes.

材料
Product Number
品牌
产品描述

Sigma-Aldrich
抗PGC-1抗体, Chemicon®, from rabbit
Sigma-Aldrich
抗-GR 兔抗, affinity isolated antibody