Merck
CN
  • A Heterojunction Structured WO2.9-WSe2 Nanoradiosensitizer Increases Local Tumor Ablation and Checkpoint Blockade Immunotherapy upon Low Radiation Dose.

A Heterojunction Structured WO2.9-WSe2 Nanoradiosensitizer Increases Local Tumor Ablation and Checkpoint Blockade Immunotherapy upon Low Radiation Dose.

ACS nano (2020-04-24)
Xinghua Dong, Ran Cheng, Shuang Zhu, Huimin Liu, Ruyi Zhou, Chenyang Zhang, Kui Chen, Linqiang Mei, Chengyan Wang, Chunjian Su, Xiangfeng Liu, Zhanjun Gu, Yuliang Zhao
摘要

Radiotherapy (RT) in practical use often suffers from off-target side effects and ineffectiveness against hypoxic tumor microenvironment (TME) as well as remote metastases. With regard to these problems, herein, we provide semiconductor heterojunction structured WO2.9-WSe2-PEG nanoparticles to realize a synergistic RT/photothermal therapy (PTT)/checkpoint blockade immunotherapy (CBT) for enhanced antitumor and antimetastatic effect. Based on the heterojunction structured nanoparticle with high Z element, the nanosystem could realize non-oxygen-dependent reactive oxygen species generation by catalyzing highly expressed H2O2 in TME upon X-ray irradiation, which could further induce immunogenic cell death. Meanwhile, this nanosystem could also induce hyperthermia upon near-infrared irradiation to enhance RT outcome. With the addition of anti-PD-L1 antibody-based CBT, our results give potent evidence that local RT/PTT upon mild temperature and low radiation dose could efficiently ablate local tumors and inhibit tumor metastasis as well as prevent tumor rechallenge. Our study provides not only one kind of radiosensitizer based on semiconductor nanoparticles but also a versatile nanoplatform for simultaneous triple-combined therapy (RT/PTT/CBT) for treating both local and metastasis tumors.

材料
货号
品牌
产品描述

Sigma-Aldrich
二苯硒醚, 96%