跳转至内容
Merck
CN
  • Lactobacillus reuteri-derived extracellular vesicles maintain intestinal immune homeostasis against lipopolysaccharide-induced inflammatory responses in broilers.

Lactobacillus reuteri-derived extracellular vesicles maintain intestinal immune homeostasis against lipopolysaccharide-induced inflammatory responses in broilers.

Journal of animal science and biotechnology (2021-02-18)
Rujiu Hu, Hua Lin, Mimi Wang, Yuezhen Zhao, Haojing Liu, Yuna Min, Xiaojun Yang, Yupeng Gao, Mingming Yang
摘要

Lactobacillus reuteri strains are widely used as probiotics to prevent and treat inflammatory bowel disease by modulating the host's immune system. However, the underlying mechanisms by which they communicate with the host have not been clearly understood. Bacterial extracellular vesicles (EVs) have been considered as important mediators of host-pathogen interactions, but their potential role in commensals-host crosstalk has not been widely studied. Here, we investigated the regulatory actions of EVs produced by L. reuteri BBC3, a gut-associated commensal bacterium of Black-Bone chicken, in the development of lipopolysaccharide (LPS)-induced intestinal inflammation in a chicken model using both in vivo and in vitro experiments. L. reuteri BBC3 produced nano-scale membrane vesicles with the size range of 60-250 nm. Biochemical and proteomic analyses showed that L. reuteri BBC3-derived EVs (LrEVs) carried DNA, RNA and several bioactive proteins previously described as mediators of other probiotics' beneficial effects such as glucosyltransferase, serine protease and elongation factor Tu. In vivo broiler experiments showed that administration of LrEVs exerted similar effects as L. reuteri BBC3 in attenuating LPS-induced inflammation by improving growth performance, reducing mortality and decreasing intestinal injury. LrEVs suppressed the LPS-induced expression of pro-inflammatory genes (TNF-α, IL-1β, IL-6, IL-17 and IL-8), and improved the expression of anti-inflammatory genes (IL-10 and TGF-β) in the jejunum. LrEVs could be internalized by chicken macrophages. In vitro pretreatment with LrEVs reduced the gene expression of TNF-α, IL-1β and IL-6 by suppressing the NF-κB activity, and enhanced the gene expression of IL-10 and TGF-β in LPS-activated chicken macrophages. Additionally, LrEVs could inhibit Th1- and Th17-mediated inflammatory responses and enhance the immunoregulatory cells-mediated immunosuppression in splenic lymphocytes of LPS-challenged chickens through the activation of macrophages. Finally, we revealed that the reduced content of both vesicular proteins and nucleic acids attenuated the suppression of LrEVs on LPS-induced inflammatory responses in ex vivo experiments, suggesting that they are essential for the LrEVs-mediated immunoregulation. We revealed that LrEVs participated in maintaining intestinal immune homeostasis against LPS-induced inflammatory responses in a chicken model. Our findings provide mechanistic insight into how commensal and probiotic Lactobacillus species modulate the host's immune system in pathogens-induced inflammation.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
青链霉素, Solution stabilized, with 10,000 units penicillin and 10 mg streptomycin/mL, 0.1 μm filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
OptiPrep密度梯度培养基, used for cell and subcellular organelle isolation
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
脂多糖 来源于大肠杆菌 0111:B4, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
台盼蓝, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
蛋白酶K-琼脂糖 来源于林伯氏白色念球菌, lyophilized powder
Sigma-Aldrich
1,1′-二十八烷基-3,3,3′,3′-四甲基吲哚菁高氯酸盐, BioReagent, suitable for fluorescence, ≥98.0% (TLC)
Sigma-Aldrich
两性霉素B 来源于链霉菌 属, Vetec, reagent grade, BioReagent, suitable for cell culture, ~80%
Sigma-Aldrich
Octoclothepin 马来酸盐, solid