跳转至内容
Merck
CN
  • PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis.

PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis.

Cell reports (2021-02-25)
Xinxin Song, Jiao Liu, Feimei Kuang, Xin Chen, Herbert J Zeh, Rui Kang, Guido Kroemer, Yangchun Xie, Daolin Tang
摘要

Although induction of ferroptosis, an iron-dependent form of non-apoptotic cell death, has emerged as an anticancer strategy, the metabolic basis of ferroptotic death remains poorly elucidated. Here, we show that glucose determines the sensitivity of human pancreatic ductal carcinoma cells to ferroptosis induced by pharmacologically inhibiting system xc-. Mechanistically, SLC2A1-mediated glucose uptake promotes glycolysis and, thus, facilitates pyruvate oxidation, fuels the tricyclic acid cycle, and stimulates fatty acid synthesis, which finally facilitates lipid peroxidation-dependent ferroptotic death. Screening of a small interfering RNA (siRNA) library targeting metabolic enzymes leads to identification of pyruvate dehydrogenase kinase 4 (PDK4) as the top gene responsible for ferroptosis resistance. PDK4 inhibits ferroptosis by blocking pyruvate dehydrogenase-dependent pyruvate oxidation. Inhibiting PDK4 enhances the anticancer activity of system xc- inhibitors in vitro and in suitable preclinical mouse models (e.g., a high-fat diet diabetes model). These findings reveal metabolic reprogramming as a potential target for overcoming ferroptosis resistance.

材料
产品编号
品牌
产品描述

Roche
cOmplete Mini蛋白酶抑制剂Cocktail, Tablets provided in a glass vial
Sigma-Aldrich
谷胱甘肽检测试剂盒, sufficient for 700 assays
Sigma-Aldrich
D-乳酸比色测定, sufficient for 100 colorimetric tests