跳转至内容
Merck
CN
  • Maintenance DNA methylation in pre-meiotic germ cells regulates meiotic prophase by facilitating homologous chromosome pairing.

Maintenance DNA methylation in pre-meiotic germ cells regulates meiotic prophase by facilitating homologous chromosome pairing.

Development (Cambridge, England) (2021-05-18)
Yuki Takada, Ruken Yaman-Deveci, Takayuki Shirakawa, Jafar Sharif, Shin-Ichi Tomizawa, Fumihito Miura, Takashi Ito, Michio Ono, Kuniko Nakajima, Yoko Koseki, Fuyuko Shiotani, Kei-Ichiro Ishiguro, Kazuyuki Ohbo, Haruhiko Koseki
摘要

Heterochromatin-related epigenetic mechanisms, such as DNA methylation, facilitate pairing of homologous chromosomes during the meiotic prophase of mammalian spermatogenesis. In pro-spermatogonia, de novo DNA methylation plays a key role in completing meiotic prophase and initiating meiotic division. However, the role of maintenance DNA methylation in the regulation of meiosis, especially in the adult, is not well understood. Here, we reveal that NP95 (also known as UHRF1) and DNMT1 - two essential proteins for maintenance DNA methylation - are co-expressed in spermatogonia and are necessary for meiosis in male germ cells. We find that Np95- or Dnmt1-deficient spermatocytes exhibit spermatogenic defects characterized by synaptic failure during meiotic prophase. In addition, assembly of pericentric heterochromatin clusters in early meiotic prophase, a phenomenon that is required for subsequent pairing of homologous chromosomes, is disrupted in both mutants. Based on these observations, we propose that DNA methylation, established in pre-meiotic spermatogonia, regulates synapsis of homologous chromosomes and, in turn, quality control of male germ cells. Maintenance DNA methylation, therefore, plays a role in ensuring faithful transmission of both genetic and epigenetic information to offspring.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
抗磷酸组蛋白H2A.X(Ser139)抗体,克隆JBW301,FITC结合物, clone JBW301, Upstate®, from mouse