跳转至内容
Merck
CN
  • S6K1 controls adiponectin expression by inducing a transcriptional switch: BMAL1-to-EZH2.

S6K1 controls adiponectin expression by inducing a transcriptional switch: BMAL1-to-EZH2.

Experimental & molecular medicine (2022-03-27)
Sang Ah Yi, Ye Ji Jeon, Min Gyu Lee, Ki Hong Nam, Sora Ann, Jaecheol Lee, Jeung-Whan Han
摘要

Adiponectin (encoded by Adipoq), a fat-derived hormone, alleviates risk factors associated with metabolic disorders. Although many transcription factors are known to control adiponectin expression, the mechanism underlying its fluctuation with regard to metabolic status remains unclear. Here, we show that ribosomal protein S6 kinase 1 (S6K1) controls adiponectin expression by inducing a transcriptional switch between two transcriptional machineries, BMAL1 and EZH2. Active S6K1 induced a suppressive histone code cascade, H2BS36p-EZH2-H3K27me3, leading to suppression of adiponectin expression. Moreover, active S6K1 phosphorylated BMAL1, an important transcription factor regulating the circadian clock system, at serine 42, which led to its dissociation from the Adipoq promoter region. This response resulted in EZH2 recruitment and subsequent H3K27me3 modification of the Adipoq promoter. Upon fasting, inactivation of S6K1 induced the opposite transcriptional switch, EZH2-to-BMAL1, promoting adiponectin expression. Consistently, S6K1-depleted mice exhibited lower H3K27me3 levels and elevated adiponectin expression. These findings identify a novel epigenetic switch system by which S6K1 controls the production of adiponectin, which displays beneficial effects on metabolism.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
胰岛素 溶液 人, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
3-异丁基-1-甲基黄嘌呤, ≥99% (HPLC), powder
Sigma-Aldrich
Rapamycin, ≥95% (HPLC), powder