跳转至内容
Merck
CN
  • Discovery of 3,7-dimethoxyflavone that inhibits liver fibrosis based on dual mechanisms of antioxidant and inhibitor of activated hepatic stellate cell.

Discovery of 3,7-dimethoxyflavone that inhibits liver fibrosis based on dual mechanisms of antioxidant and inhibitor of activated hepatic stellate cell.

Free radical biology & medicine (2023-05-06)
Hyomin Park, Eun Ju Lee, Dodam Moon, Hyunji Yun, Areum Cha, Injoo Hwang, Hyo-Soo Kim
摘要

The important pathway toward liver fibrosis is the TGF-β1-induced activation of hepatic stellate cells (HSCs). To discover chemicals to inhibit liver fibrosis, we screened 3000 chemicals using cell array system where human HSCs line LX2 cells are activated with TGF-β1. We discovered 3,7-dimethoxyflavone (3,7-DMF) as a chemical to inhibit TGF-β1-induced activation of HSCs. In the thioacetamide (TAA)-induced mouse liver fibrosis model, 3,7-DMF treatment via intraperitoneal or oral administration prevented liver fibrosis as well as reversed the established fibrosis in the separate experiments. It also reduced liver enzyme elevation, suggesting protective effect on hepatocytes because it has antioxidant effect. Treatment with 3,7-DMF induced antioxidant genes, quenches ROS away, and improved the hepatocyte condition that was impaired by H2O2 as reflected by restoration of HNF-4α and albumin. In the TAA-mouse liver injury model also, TAA significantly increased ROS in the liver which led to decrease of albumin and nuclear expression of HNF-4α, increase of TGF-β1 and hepatocytes death, accumulation of lipid, and extra-nuclear localization of HMGB1. Treatment of 3,7-DMF normalized all these pathologic findings and prevented or resolved liver fibrosis. In conclusion, we discovered 3,7-DMF that inhibits liver fibrosis based on dual actions; antioxidant and inhibitor of TGF-β1-induced activation of HSCs.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
LX-2 人肝星状细胞系, a highly suitable model of human hepatic fibrosis