跳转至内容
Merck
CN
  • Pals-associated tight junction protein functionally links dopamine and angiotensin II to the regulation of sodium transport in renal epithelial cells.

Pals-associated tight junction protein functionally links dopamine and angiotensin II to the regulation of sodium transport in renal epithelial cells.

British journal of pharmacology (2009-07-01)
Z Chen, I Leibiger, A I Katz, A M Bertorello
摘要

Dopamine inhibits renal cell Na(+),K(+)-ATPase activity and cell sodium transport by promoting the internalization of active molecules from the plasma membrane, whereas angiotensin II (ATII) stimulates its activity by recruiting new molecules to the plasma membrane. They achieve such effects by activating multiple and distinct signalling molecules in a hierarchical manner. The purpose of this study was to investigate whether dopamine and ATII utilize scaffold organizer proteins as components of their signalling networks, in order to avoid deleterious cross talk. Attention was focused on a multiple PDZ domain protein, Pals-associated tight junction protein (PATJ). Ectopic expression of PATJ in renal epithelial cells in culture was used to study its interaction with components of the dopamine signalling cascade. Similarly, expression of PATJ deletion mutants was employed to analyse its functional relevance during dopamine-, ATII- and insulin-dependent regulation of Na(+),K(+)-ATPase. Dopamine receptors and components of its signalling cascade mediating inhibition of Na(+),K(+)-ATPase interact with PATJ. Inhibition of Na(+),K(+)-ATPase by dopamine was prevented by expression of mutants of PATJ lacking PDZ domains 2, 4 or 5; whereas the stimulatory effect of ATII and insulin on Na(+),K(+)-ATPase was blocked by expression of PATJ lacking PDZ domains 1, 4 or 5. A multiple PDZ domain protein may add functionality to G protein-coupled and tyrosine kinase receptors signalling during regulation of Na(+),K(+)-ATPase. Signalling molecules and effectors can be integrated into a functional network by the scaffold organizer protein PATJ via its multiple PDZ domains.

材料
Product Number
品牌
产品描述

Sigma-Aldrich
胰岛素 人, recombinant, expressed in yeast (proprietary host)
Sigma-Aldrich
人胰岛素, recombinant, expressed in yeast, γ-irradiated, suitable for cell culture
Sigma-Aldrich
胰岛素 人, meets USP testing specifications
Sigma-Aldrich
胰岛素 人, ≥95% (HPLC), semisynthetic, powder, non-sterile
Sigma-Aldrich
Anti-Dopamine D1A Receptor Antibody, CT, cytoplasmic, Chemicon®, from rabbit