Merck
CN
  • Mg2+ induces a sharp and reversible transition in U1 and U2 small nuclear ribonucleoprotein configurations.

Mg2+ induces a sharp and reversible transition in U1 and U2 small nuclear ribonucleoprotein configurations.

Molecular and cellular biology (1984-09-01)
I Reveillaud, M N Lelay-Taha, J Sri-Widada, C Brunel, P Jeanteur
摘要

When U1 and U2 small nuclear ribonucleoproteins (snRNPs) purified by a procedure which preserves their immunoprecipitability by autoimmune antibodies (Hinterberger et al., J. Biol. Chem. 258:2604-2613, 1983), were submitted to extensive digestion with micrococcal nuclease, we found that their degradation pattern was sharply dependent upon magnesium concentration, indicating that they undergo a profound structural modification. At low Mg2+ (less than or equal to 5 mM), both particles only exhibit a core-resistant structure previously identified as being common to all but U6 snRNAs (Liautard et al., J. Mol. Biol. 162: 623-643, 1982). At high Mg2+ (greater than or equal to 7 mM), U1 and U2 snRNPs behave differently from one another. In U1 snRNP, most U1 snRNA sequence is protected, except for the 10 5'-terminal nucleotides presumably involved in splicing and a short sequence between nucleotides 102 and 108. Another region spanning nucleotides 60 to 79 is only weakly protected. This structural modification was demonstrated to be reversible. In U2 snRNP, the U2 snRNA sequence remains exposed in its 5' part up to nucleotide 92, and the 3'-terminal hairpin located outside the core structure becomes protected.